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Chapter 1

Implicit Functions and
Total Differentials

1.1 Linear Models

Problem 1 Consider the following implicit function:
9(1/79617162) =3y — 6x1 — S5z = 0.

Solve for the reduced form and find %% and % from the reduced form. Now

find %;% and % from the total differential.

Answer

‘We have

6 5
g(y,l'l,.’lfg) = Sy_ 6x; — dro =0 = Y = 5331 + 5332
so the reduced form is:

5
y=f(x1,22) =221 + 372

so that:
W _,

81‘1 7 8_.’132 N 3
Alternatively from the total differential:
3dy — 6dx1 — 5dxs =0

we have setting dro = 0 and replacing the d’'s with 9's :

38y—68m1:0:>ﬁ:2
6$1
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while setting dz; = 0 and replacing the d’'s with &'s :

oy 5
30y — 50x9 =0 — — = —.
4 2 3$1 3

Problem 2 Consider the following system of equations:
3y1 +4ys — 61 —dra—5 = 0
2y; + 5ys + 621 + 522 +5 = 0.

Write these equations in matrixz form and solve for the reduced form. Find %%

and %g—i from the reduced form. Now find %g—i and %g—i from the total differential
using Cramer’s rule.

Answer

%ngHi}%gg}Hﬂ+[ﬂ[

MW:MHé]ﬂ#O

Thus:

so that A is non-singular. We directly calculate the reduced form as:

] -l BR]- ] T

54 45 45
[ =T+ T2+ ]

30 _ 25, _ 25
Tt FI2— T

so that:
I, m)—54m +45$ +45
A —— 1\T1,T2) = 7 1 = 2 7
30 25 25
y2 = fa ($1,$2)=—7$1—7$2—7
and hence:

Oy 54 9y 30

or, 7 0xr, T

Alternatively we have from the total differential that:

HAEEIEEa
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so that setting drs = 0 and replacing d’'s with 9’'s we have:

tHEIRERIEYEH

-34 6@/1 o 6
2]l ][]

so that dividing both sides by 0x1 we obtain:

sl E]-[4]

Thus using Cramer’s rule:

or:

REE

% _ det-_g ézﬁ
O det:g if)l 7
% B det_2 2@
Om det-g g 7

The following 3 problems are based on the following information:
Consider the following set of implicit functions for y; > 0:

91 (Y1, y2,21,02) = In(y1) —2y2 — 3w —4w2+6 =0
92 (y1,92,1,22) = yo—1In(y1) —221+322—-5=0

with reduced form y; = f1 (z1,22) and y2 = f1 (21, 22) .

Problem 3 Show how this system can be rewritten as a linear set of equations:
Aj+ Bx+c¢ =0, what are A, §, B,x, and ¢ ¢ Show that A is nonsingular by
calculating its determinant.

Answer

Setting 1 = In (y1) and gz = y2 we have:

91 (J1, 92, 1,82) = G1—2Yo—3x1 —4a2+6=0
92 (J1,Y2,1,2) = Yo— 1 —221+322—-5=0
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so that:

det[A}det{_l _2]17A0

so that A is non-singular.
Problem 4 Solve for the reduced form § = Dz + e and determine

oy
6$2 '

What does the sign of the multiplier tell you about the relationship between xo
and y1?

Answer

‘We have:

S ESr R P It

. [—7@‘14—21‘2—4}

L —

Sy <

N =

| S
Il

—5xr1 —x2+ 1
so that:
1 = —Tx1 420 —4=y; =exp(j) =e T1t22—1
Yo = =0T —x3+ 1=y =9ys=—-bxr;—x2+1
and
Ay

pr Qe Trit2Ta=d — 9y > ().

Therefore there exists a positive relationship between x5 and .

Problem 5 Use the total differential on the original model solve for %m% using
Cramer’s rule and show that gx% > 0.

The total differential is:
1
y_dyl — 2dy2 — 3d.’L‘1 — 4d$2 =0
1

1
—y—dyl 4+ dys — 2dx1 +3dxs = 0
1
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and writing this in matrix notation we have:

NI e P b

so that setting dx; = 0 we have:

=

1 &}
-L 1 Oyz -3
Y1 Oxo
so that:
4 -2
o det { _3 ]

The following 2 problems are based on the following information:

Consider the following system of implicit linear functions:

3y1 + 2y +4ys — 621 +229—4 = 0
201 —by2 +2ys + a1 —x2+3 = 0
Y1+ 2y —ys+2xr1 — 325 —2 = 0

Problem 6 If this system is written as Ay + Bx +c¢ =0, what are A,y, B, x,
and c? Show that A is nonsingular by calculating its determinant.

Answer

In matrix notation we have:

3 2 4 Y1 -6 2 - —4 0
2 -5 2 yo | + 1—1[1}+3 0
1 2 -1 s 2 -3 2 -2 0
A is nonsingular since:
3 2 A4
det | 2 =5 2 | =47#£0.
1 2 -1
Problem 7 If we write the reduced form asy = Dx+E, calculate D = —A~'B
and E = —A~'c. From the matriz D determine the multipliers:
Oy

L fori=1,2,3 and j = 1,2.
833‘j

What do the signs of each of these multipliers tell you?
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Answer
‘We have:
(3 2 477'[ -6 2 -2 ¥
D = —|2 -5 2 1 -1 | = % —%
|1 2 -1 | | 2 -3 s
(3 2 47 7'[ -4 g
E = —| 2 -5 2 3| = %—a
i 1 2 -1 ] i -2 v
so the reduced form is:
" _52 8 ) 22
i i A R
g 2| [ e ] 1%
Y3 47 47 47

or:

52 80 22
Y1 = f1($1,$2,$3)=—4—7$1+E332+4—7

27 9 41

y2 = fo(x1,x2,23) = Eml - 4—7$2 + 7
P O O [
Yys = 3(T1,22,T3 —47961 47$2 a7
It follows then that:
g&& gu _ 52 80
R N
% o T
3 = —_
Sor Don A

Thus for example % = % > 0 implies that there is a positive relationship

between x2 and y;.

Problem 8 Write out the total differential Ady + Bdx = 0 and solve for the
multiplier gﬂ% using Cramer’s rule.

Answer
We have:
3 2 4 din 6 27 . 0
2 -5 2 dy | +| 1 -1 {dzl]— 0
1 2 -1 dys 2 -3 2 0
so that setting dx, = O:
3 2 41[5% —2
2 -5 2 e =] 1
1 2 —1 Qys 3

8:L‘2
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so that:
[ —2 2 4
det, 1 -5 2
oy | 3 2 -1 ] 80
Ors 47 T
(3 —2 4]
det | 2 1 2
dya 1 3 -1 | 9
Ors 47 Y
(3 2 —27
det| 2 -5 1
dys 12 3] 79
Ors 47 AT

The following 4 problems are based on the following information:

Consider the following set of linear equations:

Sy1 — 2y2 + 3y3 + 41 + 222 + T3
—5Y2 +2ys +4x1 — 22 =
4y3*$1 — Ty — T3 = 0.
Problem 9 If this system is written as Ay+ Bx+c =0, what are A,y, B,x,c

and 07 Show that A is nonsingular by calculating its determinant. Show that
A is upper triangular?

Answer

Here we have ¢ = 0. In matrix notation we have:

5 -2 3 Y1 4 2 1 1 0
0 =5 2 v |+ 4 -1 0 T2 | =] 0
0 0 4 Y3 -1 -1 -1 T3 0

Note that A is upper triangular since the elements below the diagonal are all 0
and it is nonsingular since:

5 —2 3
det | 0 =5 2 | =5x (=5) x4 =—100# 0.
0 0 4

Problem 10 Recursive calculations are methods whereby one problem is solved
using the solution to the previous problem. There is a close connect with trian-
gular matrices and recursive calculations. Show in particular that it is possible
to solve for the reduced form by first solving for ys, then solving for ys using the
solution for ys, and then solving for y; using the solution for yo and ys.
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Answer
Note that the third equation has no yo or y;. We can therefore easily cal-

culate y3 as:

1 1 1
4y3_$1_$2_$3:0:>?/3=Z$1+Z$2+Z$3.

Now to calculate yo we use our solution for y3 and the second equation, which
contains no yi, as:

—byo +2ys+4xy —x9 = 0
= bHys =2y3 +4x; — 29

1 1 1
—9( = - - 4y —
= 9y (4z1+4x2+4x3> +4x1 — 20

Y3

3 1 1
== Y2 = Exl - sz + 1—0963-

Now that we have y» and y3 we can calculate y; from the first equation as:

5Yy1 — 2y + 3ys + 41 + 20 +23 = 0
5y1 = 2y2 — 3y3 — 4%1 — 2$2 — I3

=
3 1 1 1
= 5y12(—x1—x2+—x3>3<

10 10 10
—4x1 — 2x9 — T3
= = *23«"1 - ﬁiﬂz - iiﬂi’y
100 100 100
Problem 11 If we write the reduced form asy = Dx+E, calculate D = —A~'B
and B = —A~lc. From the matriz D determine the multipliers:

Jyi , :
Y fori=1,2,3 and j =1,2.
&r,j

What do the signs of each of these multipliers tell you?

Answer

The inverse of an upper triangular matrix is also upper triangular and hence
easier to calculate. We have:

-1

5 -2 3 1 -20 8 11
0 =5 =100 0 20 -10
0 0 4 0 0 -25

4

4

1 1
-1+ —Z2 + —I3

4

)
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‘We have:
5 -2 317' 4 2 1
D = —|0 -5 2 4 -1 0
0 0 4 -1 -1 -1
1 -20 8 11 4 2 1
= 1o 0 20 -10 4 -1 0
0 0 -25 -1 -1 -1
_59 _ 59 _ 31
B B B
B 1 W
1 1 1
Since ¢ = 0 it follows that £ = —D~1¢ = 0. The reduced form is therefore:
59 59 31
ool I e I O
Y2 | = 1—9 —W @ zo |+ | 0
Y3 T 7 i T3 0
or a reduced form:
A (e me ) = gy - 2 3L,
B = 1(T1,22,23) = 1001 1002 1003
= fo(r,a ) = o — e o
Y2 = 2\L1,22,T3 —10$1 10£U2 10333
1 1
ys = f3(x1,22,23) = 781+ %2+ s
It follows then that:
op o Om _59 _ 59 _ 31
o o SR |_p_| W M W
oz Oxa Oxs3 - - 19 19 19
Ous  Oys  Oys 1 1 1
8:L‘1 8:L‘2 8:L‘3 4 4 4

Thus for example %1@ =
3
between x3 and ys.

10

L > 0 implies that there is a positive relationship

Problem 12 Write out the total differential Ady + Bdx = 0 and solve for the

multipliers %7 %z—i, gﬂ% using Cramer’s rule.
Answer
We have:
5 -2 3 din 4 2 1 dxq 0
0 =5 2| |dp|+| 4 -1 0||dm|=1]0
0 0 4 dyg -1 -1 -1 dl‘g 0
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so that setting dxi; = dzo = 0 that:

5 —2 37 [ 94 -1
0 -5 2 e =] 0
0 0 4 9ys 1
Ox3
so that:
[ -1 -2 3
det 0 -5 2
oy |1 0 4] 31
Ors —100 100
[5 -1 3
det [ O 0 2
dy2 0 14 1
Ors —100 10
[5 —2 -1
det { 0 =5 0
8y3 - L 0 0 1 . 1
Ors —100 T4
1.2 Non-Linear Models
Problem 13 Write the equation: In (y) = —%.’L‘z as an explicit function and as

an implicit function. Calculate the total differential and from this calculate %.

Answer

The explicitly and implicit functions are:

y = fl=c"
1
g(y,z) = In(y)+ §x2 =0.
The direct calculation of the derivative yields:
d _ e La—
dov -
Using the total differential we have:
1 d
—dy+xdr =0= Y —xy.
Y dx

Problem 14 Given the implicit function

g (y,2) = VFln(y) — 27 =0

where x > 0 and y > 1, calculate the total differential and show from this that
% < 0. Can you find the reduced for y = f (x) directly?
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Answer

The total differential is:

<% + 1;%) dy+2e "dr =0
so that:
dy et Z2Ve T
d = (2 15y~ (+h@)

since the numerator is negative and the denominator is positive since:
y>1l=1+In(y) >0.

It is not possible to directly calculate the reduced form since there is no way of
simultaneously liberating y from In (y) and |/y in /yIn(y) .

The following 3 problems are based on the following information:

Consider the implicit functions:

=

—2:61:0
74%2:0

_1
g1 (Y1, 92, 01,22) = (y1) 2 (y2)
g2 (Y1, 92, 71,72) = (y1)% (y2)

where y; and yy are the endogenous variables and z; and x5 are the exogenous
variables.

Nl
o

Problem 15 Use theIn () function to convert this into a system of linear equa-
tions and use this to find the reduced form. From the reduced form find %%

and 222 show that gzi < 0 and that gﬂ = 9
1 1

8.’517 - 6"/62
Answer
We have:
(y1) 2 (y2)* =221 = O
_1 1
= (y1) % (y2)* =2m;
1 1
= —§ln(y1)+zln(yg)—ln(:vl)—ln():O
(1)* (y2) F —das = O
1 _s3
= (y1)? (y2) * =42
3
= —ln(yl)—Zln(yg)fln(zz)fln():0
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so that setting g1 = In(y1), g2 = In (y2) , &1 = In (x1), 3 = In (x2) we have:
1 1 - -
-5 % i -1 0 21 —mn(2)| |0

1l SR S 1
so that simplifying and solving we have:

1 17~ 1 171

- 2 s = In (2) ]

AT RS

_ —3x1 — 22— 3In(2) —In(4)
N —2$1—2$2—2ln(2)—21n( )

L —
Q<
N
—_
Il

or:
71 = —-3z1—22—3In(2)—1In(4)
Jo = —2x1—229—2In(2)—2In(4)
so that:
. 1
— — o1 — p,=3w1—22—3In(2)=In(4) _ — —3z1—a2
Y1 fi(w,22) =e e 35¢
_ 1
— — b2 — —2x1—2x2—21n(2)—21n(4) — = 212w
Yo f2(w1,22) = e e i¢ .
From this you can show that:
% - 367311712 < % - fie*i’ﬂ?l*ﬂﬁz
8.’13‘1 32 ’ 8.’13‘1 32
% — % — _i —3z1—T2
0z Oza 32 '

Problem 16 Calculate the total differential for this system of equations. Show
that the conditions for the explicit functions to exist are satisfied.

Answer

The total differential is:

(-3t

(% (1)~

e

1 _1 _3
)dy1+(z y1) 2 (y2) 4)dy2—2d:v1 =0

3

(
(y2)1> dy, + <—Z (y1)® (yz)z) dyy —4dzy = 0.

=

Since:

—~ N
—~
<
oy

|
wles
—
<
N
~
1=

—~ <
~—

|

EN USRS

\
NS

<
=
—

|

vl

—
<
v
=

|
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and
_L(y)"3 T L ()2 (u) 1 3 _s _s
det | 2 (yl_% (yQ_)% 4§y1) , (yQ)_% _ gyl_lyz T _ ST 1
2 (y1) 7 (y2) 1 (y1)? (y2)
2 . _s
= gyl 1y2 4 > O
by the implicit function theorem the explicit functions y; = f1 (21, 22) and

y2 = fa (z1,22) exist (which we already know since we calculated them in the
previous problem!).

Problem 17 Use the total differential to calculate g_iﬁ anda—ff and show that

Oxy
Oy1 Oy _ Oy1
Py < 0 and that Do = Doy
Answer

From the total differential setting dxs = 0 we have:

_3 1 1 _3 .
“3 ) )T Fe) T T || | [ 2}
F) T )T 3 )T () T ] | A 0
so that using Cramer’s rule:
(9 L) 7 (o)1 |
det 2 4§y1) ;(yz),z 6 1 _z
Iy 0 —5)2G) * | —30)* )" |
or; det [A] B det [A]
Ne=—— Ne=——
+ +
- . N ;
det . 2 <y1,l 2 (y{; 2 N L
Oy _ L5 ") 0] ) Fw) T
04 det [A] det [A] '
Ne—— Ne——
+ +

Similarly from the total differential setting dx; = 0 we have:

_3 1 1 _3 .
“5) )T T () H%L]:[o}
F) 77T —Fw)T ) T ] | an 4
so that using Cramer’s rule:
_ i -
det | 0 T (p2)7"
3 ()3 (1) T =3 (o)1
[ _ L4 1) (n2 _ (Y1) 2 (y2) ¢ <0
Oxg det [4] det [A]
N—— N——
+ +
_ ., N }
e [ 73002 00 0 .
Oz _ ) P ()t 4 _ 2(y) 2 (2)* <0
Oy det [A] det [A]
N—— SN——
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The following 3 problems are based on the following information:

Consider the following system of implicit functions:

91 (Y1, Y2, y3, 21,22, 23) = 2In(23) —In(y2) —In(y3) =0
g2 (ylay27y37$1,x27$3) = 2 — % —0

hn
93 (Y1,Y2,Y3,T1, X2, T3) = 2x9— % —0

where y1,y2 and y3 are the endogenous variables (assumed to be positive) and
x1,z2 and x5 are the exogenous variables (also assumed to be positive).

Problem 18 Cualculate the total differential and write it in matriz notation.
Are the conditions of the implicit function theorem which guarantee the existence

of the explicit functions satisfied?

Answer

The total differential is:

1 1 2
——dys — —dys + —drg = 0
Y2 Y3 T3
1
——dy; + y—édyg +2dzy = 0
Y2 Ya
1
——dy; + y—édy;; +2dzs = 0
Ys Y3
or in matrix notation:
1 1
10 Ew dy 00 2 dzx, 0
—¥ i £ dy | +]12 0 0 dea | =10
1 1
— 0 ” dys 0 2 O dxs 0
Thus:
0o -+ _L
1 i v 2
det [A] =det | —3; ‘Z? 0| =-55<0
_ 1 f) u Y2y
Y3 Y3

Since det [A] # 0 the reduced form:
y1 = f1(x1,22,23), Y2 = fo (w1, 22,23), y3 = f3 (v1,22,73)

exists.

Problem 19 From the total differential calculate %ﬁ% and %ﬁ and determine
their signs if possible.
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Answer

Setting dx1 = dxo = 0 we have

0o —-L1 _1L dy1 2
2 E] dxs T3
-L 3 0 9y2. = 0
Y2 Y O3 -
—L 0 4 y3 0
Y3 Y3 Oxs

2 _1 _1
T3 Y2 Y3
0 fy% 0
2
2
Ay _ 0 0 % _ T X % X }@% .
Oxs det [A] det [A] ’
Setting dx; = dx3 = 0 we have
1 _ 1 &l
—_ 2 —
T S 7 I
1 1
" ys 0 }1‘//? 53% 2
so that from Cramer’s rule:
1
10 0 ™
det 1 0 0
_ L 1 2
% _ Y3 2 % _ _Y2Ys <0
O det [A] det [A] ’

Problem 20 Solve the three implicit functions above for the explicit functions
y1 = fi(z1,22,23) , y2 = f1(21,22,23) and y3 = f3 (21,22, 23).

Answer

From the 3 implicit functions we have:

2In(23) —In(y2) —In(ys) = 0= yoys = x%

2.1‘1—& = 0=y =22192
Y2
Y1

209 — = = 0:>y1:2$2y3
Y3

so that dividing the second and third results we have:
T1Y2

T2
=l=y=—ys
T2Y3 X1

and placing this in the first result:

2 L2 L2 9 2
y2ys = w3and yp = —y3 = —y; = 13
X I

i _1
= y3 = f3 (21,72, 73) = 27T >3
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and so:
T2 i -1 To 1 _1
Y2 = —yzand Y3 =a{Tp "3 == Y2 = 1Ty " T3
T 1
_1 1
Y2 = f2 ($17x27333) = 2$22$3.
Finally:
1 _1 1 _1
Y1 = 2x9y3 and 93:$f$22$3:>y1:2x2zfz22x3
11
= y1 = f1(21,22,73) = 22{ v3 73.
Problem 21 Consider the following system of implicit functions:

g1 (Y1, Y2, 71, T2, 23) = yit —3ys2 +a3=0
g2 (Y1,¥2, %1, 02,23) = x1ln(y)+a2ln(yz2) =0

where all variables (i.e. all y's and x's) are assumed to be positive. Calculate
the total differential of this system and write it in matriz form. Show that the
conditions for the tmplicit function theorem will be satisfied. Solve for %ﬁ% using
Cramer’s rule and determine its sign if possible.

Answer

‘We have the total differential:

Zzlyfxl_ldyl — 3x2y§2_1dy2 +21In (1) y%”ldzl —3In (y2) y32dae +dxs = 0

%dgﬂ + %dyz +1n(y1)dey +In(y2)dzs = 0.
1 2

In matrix form we have:

[ 2x11§’“_1 —Smiyé“_l ] [ dys ] N [ 2In(y1) y7** -3 (y2)ys® 1 }
m - dya In (y1) In(y2) 0

Thus

201y7" T 3wyt ] _ 1% (207 + 3y52 ) 50

det |: T x
Zi' Z;% Y211

since all variables (i.e. all s and z’s) are assumed to be positive. Since
det [A] # 0 the reduced form:

y1 = f1(x1,22,23), Y2 = fo (w1, 22,23)

exists.
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Setting dx; = dxo = 0 we have:

{ 2077 T 3wy ] [

H

8

o o =

I
|

—

O =
—_

T3 g
Y1 Y2 Oxg
so that:
_ x2—1
det 1 3:52 2
oy 0 ™ v
_ Y2 _ Y2
- — — - 2xq—1 xo—1
Ox3 2wyt Baaysr ! 2077 i +3y5% " e
det - T1T2 —
Z1 Z2 Y291
Y1 Y2
U1

>0
o T 50)

1.3 Supply and Demand

The following 2 problems are based on the following information:

Consider a demand and supply model where households pay a tax T for
every unit they buy. Demand and supply are therefore given by:

Q" = D(P+T),
QR = S(P).
Letting Q° = Q¢ = @ we then have:
Q = DP+T)
Q@ = S(P)
and
Dp=D' (P+T7)<0,Sp=5(P)<0
Problem 22 Write the structural model as a system of implicit functions in-
dicating what are the endogenous and exogenous variables. Calculate the total
differential.
Answer
We have:
9 (@QPT) = Q-DP+T)=0
92(Q,PT) = Q-S5(P)=0.
The total differential then is:
dQ—D'(P+T)dP—-D' (P+T)dl = 0
dQ —S"(P)dP = 0
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or:

dQQ — DpdP — Dpdl' = 0
dQ — SpdP = 0.
Problem 23 From the total differential calculate g—? and g—? and show that

both are negative. If Po = P+T is the net price that households pay, show that
P

> 0.
T

Answer
We have:
_ 1 —-Dp
=
det[A] = —-Sp+Dp<0
and
o]
R
so that:
det| L 0P e
8_@ B 1 —Sp _—SPDP<O
or det [A] ~ det [4]
N——
(1 Dp N
~~
8_P_det_1 0]_DP<O
or det [A] ~ det[4]
——

Now since P. = P + T we have:

OP. _ 0P -Dp .,
or — oT -~ —Sp+Dp
—Sp
= — >0.
—Sp+Dp

The following 3 problems are based on the following information:

Suppose that demand is given by: Q¢ = D(P) where D'(P) < 0, supply is
given by: Q° = S(P) where S’(P) > 0, and that in equilibrium Q¢ = Q* = Q.
The government decides to impose a tax on this good such that if the household
purchases one dollar of the good it must pay t dollars to the government where
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t > 0. This means that the effective price the household must pay is P- (1 +¢).
Hence in equilibrium the following two implicit functions will hold
Q—DP-(1+t)) = 0
Q-5(P) =
These two implicit functions then determine the explicit functions P(¢) and

Q(t), that is, the price and quantity as a function of the tax ¢. To simplify the
notation define:

Dp=D'(P-(1+1t)<0, Sp=5(P)<0

Problem 24 Tuke the total differential of the two implicit functions and show
that the conditions of the implicit function theorem are satisfied; that is, the
appropriate matrix is nonsingular.

Answer

The total differential then is:

dQ — (1+t)D'(P-(1+t)dP —D' (Px (1+t))-Pdt = 0
dQ— S (P)dP = 0

or:
dQ — (1+t)DpdP — DpPdt = 0
dQ — SpdP = 0
‘We have:
[ 1 —(1+t)Dp
A =17 _s
det[A] = —-Sp+(1+t)Dp<0.

Problem 25 Calculate %—It) and %?‘ from the last problem and determine their

signs. What do these signs tell you about the impact of the tax on the market?

Answer

‘We have
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so that:
det Dp-P 7(1+t)DP + N
@ B i 0 -Sp 7*SPDP'P<0
o det [A] ~ det[4]
——
[ 1 Dp-P R
——
op 1 o }_—DP-P<O
ot det [4] ~ det[4] ’
N

Problem 26 The price that households pay is P. = P - (1 +t). Show that an

increase in the tax increases P,; that is %“— > 0.

Answer
Now since P. = P - (1 +t) we have:

0P, oprP —Dp-P

ot W'OHHP:—SﬁDP-(lH)
—Sp

= > 0.
—Sp+Dp-(1+1)

(14t +1

The following 3 problems are based on the following information:

Consider a demand and supply model where for each unit they buy, con-
sumers must pay a tax of 77 and producers a tax of 75. This results in a
demand and supply model of the form:

Q = D(P+T), ‘demand curve’
Q = S(P-1T), ‘supply curve’.

As is usual assume that:
Dp=D'(P+T))<0,Sp=8(P-T) <0.

Problem 27 Determine the sign of g—g and show that an increase in Ty in-

creases the net price: P+T7 that households pay. Determine the sign of g—Yi and
show that an increase in Ty decreases the net price: P — Ts that firm’s receive.
Given that the tax revenue that the government collects is: R = (Th +Tz2) Q,
show that the government will be indifferent between increasing Ty and T in
that:

OR OR

oTy 0Ty
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Answer
We have:
9 (Q,P,T1,Ty) = Q-D(P+T1)=0
g2 (Q,P,T1,Ts) = Q—-S(P—-Ty)=0.
The total differential then is:
dQ — DpdP — DpdTh
dQ — SpdP + Spdl; =

We have:
_ 1 —Dp
f- ]
det [A} = —-Sp+Dp<0
and setting d75 =0
[ 1 —Dp =
AN
8_@_ det_l _SP:|__SPDP<O
on det [A] ~ det [4]
N——
(1 Dp N
~~
a_Pidet_1 0:|DP<0
o, det [A] ~ det[4]
——
Now since P. = P + T we have:
0P, oP —Dp
a7, or, '~ TSp+Dp
—Sp
= —>0.
—Sp+ Dp
Furthermore setting d77 = O:
1 -Dp ]| 24| [ o
1 -Sp || 2|7 -5
so that:
0 —Dp + -
NN
Q det{sp —Sp ] _ S Dp _,
o, det [4] ~ det[4]
N——
1 0 by
~~
or det{l —Sp]_—sp 0
oT, det [A] ~ det [4]
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Now if R = (T1 + T2) Q then :

OR 0Q OR oQ
ﬁT—Qﬂﬂ+Bwﬂ—aﬂ—Q+H}HD@§
0Q _ 0Q

since 77 = 575 by the above calculation.

Problem 28 Normally one thinks that households would prefer governments to
raise taxes on firms by using Ty while firm’s would prefer that governments tax
households by using T1. Prove that the if T = Ty + T5 then households, firms
and government will be indifferent to the composition of T that is how much is
of T is Ty and how much of T is Ts.

Answer

The following 3 problems are based on the following information:

Consider a demand and supply model where for each unit they buy, con-
sumers must pay tax at a rate of t; and producers a tax at a rate of t5. This
results in a demand and supply model of the form:

Q = D(P-(1+t1)), ‘demand curve’
Q = S(P-(1—t2)), ‘supply curve’.

As is usual assume that:
Dp=D'(P-(1+1t))<0,Sp=85(P-(1—-t3))<0.

Problem 29 Determine the sign of g—i, %1-, g—iomd g—g—. The tax revenue that

the government collects is: R = (t1 + t2) PQ. Find g—ﬁ and g—g.

Answer
We have:
gl(QaP7t17t2) = QiD(P(1+t1)):0
gQ(QaP7t17t2) = QiS(P(litQ))ZO
The total differential then is:
dQ—Dp-(1+t1)dP—Dp-Pdt; = 0
dQ*Sp~(17t2)dP+Sp'Pdt2 = 0.
We have:

1 —Dp-(1+1t)
1 —Sp-(1—ty)

det[A] = —Sp-(1—t))+Dp-(14+t)<0
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and setting dt; = 0

1 —Dp~<1+t1) g_fQ _ Dp-P
1 —Sp-(1-ta) || 22 |7 0
so that:
dot | PP —Dp-(1+t) " +
29 _ | 0 —Sp-(i=ty) | -Dp-PSp-(1-ts) _,
oty det [A] B det [A]
N——
[ 1 DP - P N
——
6_P - det_1 0 }DP~P<0
ot det [A] ~ det[A] ’
N——
Furthermore setting dt; = 0:
1 —Dp-(1+t) ][ 22 ] 0
1 7Sp~(17t2) (’?—’Zi *SP~P
so that:
det| 0 TDe(4t) ] +ﬂ "
@ . —Sp-P *SP'(1*t2)_7*SP~PDP~(1+t1)<0
oty det [A] N det [4]
N
1 0 +
——
8_P B det|:1 _SP'P:|__SP'P>O
oty det [A] ~ det[4] '
N——

Now if R = (t1 + t2) PQ then we have:
oQ
ol T 8_151Q>

Dp P2SP (1—1tg) — Dp-PQ>
l—tz)—i—DP (1+t1)

OR

i PQ+(t1+t2)(

= PQ+(t1 +1t2)

8t2 t2 8t2
p-P?Dp-(1+1t)—Sp-PQ
det [A] '

Ok _ PQ + (t1 +t2) (8 P+— )

= PQ+ (t +1t2)
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1.4 The IS/LM Model

The following 4 problems are based on the following information:

Consider the following IS/LM model:

¢ = c(y—t),wherec,=c(y—t)and 0 < ¢, < 1

i = i(r), where i, =i'(r) <0

g = go(government expenditure is exogenous)

t = t(y), where t, =t'(y) with 0 < ¢, <1
y = yl=cl4it 4 gl
ol(y,r ol(y,r

m® = (y,r), wherel, = (ay ) > %
m® = my (money supply is exogenous).
m* = md

Problem 30 Show that for this model the IS curve is downward sloping and
the LM curve is upward sloping.

Answer
The IS curve is defined by:
y=y'=c"+il+ g7 =cly —t(y) +i(r) + go
leading to the implicit function:
91 (Y7, 9o, mg) =y — cly —t(y)) —i(r) —go =0
with total differential:
(1—cy(1—-ty))dy —ipdr—dg, =0.

Setting dgo = 0 and solving for the slope of the IS curve: g—; we obtain:

& _(oalot)
since 7,- < 0 and:
0<1l—¢c,(1-t,) <Ll
The LM curve is defined by:

m§=m*=1(y,r)
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leading to the implicit function:
g2 (yara goamz) = l(y,?“) - ma =0
with total differential:

lydy + l.dr —dmg = 0.

Setting dm? = 0 and solving for the slope of the LM curve: g—; we obtain:
dr ly
—=——=>0
dy l,

since {, > 0 and [, < 0.

Problem 31 Using the results from the last problem and Cramer’s rule, cal-
culate Oﬁl and show that aﬁl > 0. Do the same thing with 0?\;5 and show that
90 9o B
or
< 0.

g
oms$

Answer

Setting dm{ = 0 in the total differential and writing this in matrix notation

we obtain:
{1_%(1_@) —ir] 2 [1]
ly l, 8!;"0 0
so that:
1 =i (r)
oy det { 0 I, ]
99, dot { 1—cy(1—ty) —i, ]
ly Iy

(I —cy (I —1ty)) Iy +irly
1

oy,
(1—c, (1—1t,) +ip*

s

Since both terms in the denominator are positive; that is:
l—cy(1—-t,) > 0

1y
e 0
A R >

it follows that: % > 0.
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Setting dgo = 0 in the total differential and writing this in matrix notation

we obtain:
[1—cy(1—ty) —i,«} 2 [0}
ly I iy 1
so that:
l—¢,(1-t,) O
or 0 [ l, 1
oms det [ L—cy (1—ty) —ir }
L, I
1—¢,(1—-1,)

(1—cy (T =ty)) b +irly

Since the numerator is positive while the denominator is negative, it follows
that: 2% < 0.

e
om$

Problem 32 Show that increasing the money supply increases investment.

Answer
‘We have:
o 0i y or . Oor
i=i(r) = s =1 (r) s :z,,.a—mg >0
since 4,, < 0 and from the above problem: a?;: = < 0.

Problem 33 The government’s deficit is given by:

d=go—t(y).

Now we know that an increase in government expenditure increases y and hence
it will increases tazes: t(y). Could increasing government expenditure then in-
crease tax revenue so much that it would actually reduce the deficit?

Answer

We have:

ad 9 Ay

a9, ~ g, 0TS,
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We have calculated 8%1 > 0 above so it appears the result is ambiguous since

Oy .
ty D9e > (0. However:

od Jy
090 = It 990

= 1-t,

/\
=
\

o
<
—

—_

|

-
<
SN—
SN~—

+

~.

S
k&
|

-
<

and so increasing government expenditure does increase the deficit.

The following 3 problems are based on the following information:
Consider the following IS/LM model:

oc(y,r oc(y,r
b= cly,r), WhereO<cyE%<landCTE%<0
i* = i, (i.e. investment is exogenous)
gd = ¢, (i.e. government expenditure is exogenous)
y = Cd +Z~d +g(l
al(y,r ol(y,r

m l(y,r), where l, = (8yy ) >0andl, = % <0.

m® = m, (i.e. the money supply is exogenous)

ms = md

Problem 34 The IS curve is defined by y = c(y,r) + io + go. Show how this
can be written as an implicit function of the form:

g1 (ya T, 7:07 Yo, m(s)) =0.

Taoke the total differential of this implicit function and show that the IS curve is
downward sloping.
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Answer
We have:
91(y, 100, 9o mg) =y — c(y,r) —ig — go =0
so that the total differential is:
(1 —c¢y)dy — cpdr — dig — dgo = 0.
Setting dip = dgo = 0 and solving for the slope of the IS curve g—; we obtain:

ﬁ: (1701;) <0
dy fon

since 0 < (1 —¢,) <1 and ¢, <0.

Problem 35 Using the total differentials show that the conditions of the im-
plicit function theorem are satisfied by showing that the appropriate matriz is
nonsingular. Use this to show that

dy

B0 > 0 and
or

39, < 0.

Answer

Writing the total differential in matrix notation we have:
e L S ][]
Y " dms
By the implicit function theorem the reduced form:
Y = f1(to, 9o, m3) ;7 = f2 (i0; Go, Mm7)
exists since:

l—¢cy, —c

det [ I, I

:| :(l—cy)lr+crly<0.

Setting dm§ = 0 in the total differential and writing this in matrix notation

we obtain:
l—¢, —c %% |1
by b o AL
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so that:

99, det [ 1 ; ¢y —cr ]
y

l—¢y, —c
det{ L, i ]

since both the numerator and denominator are negative.
Setting dgo = 0 in the total differential and writing this in matrix notation

we obtain:
] E -
ly I 8?52 1
so that:
l—¢, O
o det[ L, 1}
oms det l—c¢y —c
ly I
1—¢,

<0

l—¢y —c
det[ L, L }

since the numerator is positive while the denominator is negative.

Problem 36 Show that an increase in the money supply increases consumption.
Does it follow that increasing government expenditure increases consumption.

Answer

‘We have:

_ dc(y,r) Oy or
c=c(y,r) = omy Cy s —i—cramg

o

>0

since: 22 > () (from the previous problem), ¢, > 0, ¢, < 0 and 2% < 0 (from

oms oms
the previous problem).
For government expenditure we have:
dc(y,r) Oy or

c +Cr=—.

990 Y 99, 09,

c=c(y,r) =

We cannot here show that%%l > 0 since while the first term is positive the

second is negative since ¢, < 0 and aa—g’; > 0.
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The following 3 problems are based on the following information:

Consider the following IS/LM model where:

¢ = ¢r),wherec, =¢ (r) <0
i’ = i(y), where 0 < i, =7'(y) <1
g% = g,(government expenditure is exogenous)
y = +il+g°
m® = l(y,r), wherel, = 6l(6yy,r) >0and I, = al(;/;"') <0
m® = m, (money supply is exogenous).
m*® = m

Problem 37 Show that for this model the IS curve is downward sloping and
the LM curve is upward sloping. Using the total differentials show that the
conditions of the implicit function theorem are satisfied by showing that the
appropriate matrix is nonsingular. Use this to show that

dy
300 > 0 and
or
0.
09, <
Answer
‘We have:

91(y 100 gosmg) =y —c(r) —i(y) —go =0
so that the total differential is:
(1 —1iy)dy — cpdr —dgo = 0.
Setting dgo = 0 and solving for the slope of the I.S curve g—; we obtain:

dr (1 —iy)

— = 0
dy fon <

since 0 < (1 —i,) < 1 and ¢, <O0.
The LM curve is defined by the implicit function:

92y, 7, o, my) = Uy, 1) —mg =0
with total differential:

lydy + l.dr —dmg = 0.
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Setting dm? = 0 and solving for the slope of the LM curve: g—; we obtain:
dr ly
—=—=>0
dy L,

since I, > 0 and [, < 0.
Writing the total differential in matrix notation we have:

1—iy —cr dy n -1 0 dgo | | O
Ly L dr 0 -1 dm§ | |0
By the implicit function theorem the reduced form:

Y= fl (gwm(s))v r= f2 (goam(s))

exists since:

det |: 1 ;Zy 7lcr :l = (1 — Zy) l'r' + C'r’ly < 0.
Y T
Setting dm{ = 0 in the total differential and writing this in matrix notation
we obtain:
e (&)L
Ly Iy T}: 0
so that:
1 Cr
oy det[ 0 1 ]
dgo dot 1—iy —c
L ly Ly |
l
= = - = >0
—iy —Cr
det - L, I, |
1—id, 1
det Y
o { l, O }
dgo dot 1—iy —c
L ly Ly |
-1
= = . = >0
—iy —Cr
det o, L]

since both the numerator and denominator for both a%i and %are negative.

Problem 38 Using Cramer’s rule, calculate % and show that % > 0. Do
the same thing with 2= and show that 0?:;8 < 0.

]
mg
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Answer

Setting dgo = 0 in the total differential and writing this in matrix notation

we obtain:
=iy, — [ 2] Jo
ly lT 8(2;;5 B 1
so that:
1—-4, O
o det[ L, 1 ]
oms det [ 1—i, —c ]
ly l,

1.5 Profit Maximization

Problem 39 Consider a profit mazimizing firm with a concave production func-
tion: Q = F (L, K). We can write the conditions for profit maximization as

OF (L*, K*)
oL - v
OF (L*,K*)
0K -

where w and r are the real wage and rental cost of capital. Write these two

conditions as implicit functions, calculate the total differential and use this to

show that % <0 and % = %. Use the notation:

Foo= O*F (L*, K*) o= 82F(L*,K*)F _ O?F (L*,K*)
b= oLz M T T Lok KR T T K2
Answer
‘We have:
OF (L*,K*)
L K* = =) =
gl( ) ,’lU,r) 8.[/ w 0
v _ OF(L*,K%) B
92 (L*, K" w,r) = Y —r=0.
The total differential is then:
OPF(L*,K*) , ., O*F(L*,K*) ,_,
512 dL* + ALK dK* —dw = 0
O?F (L*,K*) O?F (L*,K*)

oIl e d K —dr = 0
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or:

FLLdL*+FLKdK**d”LU = 0
Frxdl* + FggdK*—dr = 0

Setting dr = 0 we have:

Frp Fri 9L _
Frg Fkk oK

Note that the matrix on the left:

Frrk Fkk
is negative definite since F' (L, K) is concave. It follows then that det [H] > 0

and the diagonal elements are negative, in particular Fr; < 0 and Fgx < 0.
We find that:

OL* B det _ 0 Frx :| - Frx o
ow det [H] ~ det[H]
[ Frp 1
OK* det | FLi 0] Pk
ow  det[H (L*,K*)] det[H]
Setting dw = 0 we have:
Frr Fri a= 1 Jo
Frx Fkk ok |1
so that:
0 Frg
%det[ 1 Fkk ] _ —Frg  OK*
or det [H] ~det[H] 0w’

Problem 40 Consider the profit maximization problem where:
7 (L,K,P,W,R)=PF (L,K)— WL — RK.
Show that the firm’s supply curve:
Q" (P,W,R) = F(L" (P,W,R), K" (P,W,R))
is upward sloping (i.e., M{i’pﬂl > 0 ) using total differentials. Show that

oQ* (P,W,R)  9L*(P,W,R)

ow oprP

using total differentials.
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Answer
‘We have:
OF (L*, K*
o i pwr) = P gy
F(L* K*
g (L, K*,P,W,R) = p% “R=0.

The total differential is then:

PFrpdl* + PFrgdK* 4+ FrdP —dW =
PFrgdl* + PFggdK* + FgdP —dR =

where:
b O KY) _OF (L*,K*)
L= oL K7 0K
_ 9*F(L*,K™) _ 9PF (L*, K™) _ O*F (L*,K*)
Frp = o2 UK = o TKK= K2

We will need :25 and 25+, Setting dW = dR = 0 we obtain:

PFLL PFLK 6011/)* _ *FL
PFrx PFrg o

or:

Frn Fri %Lpi _ 11 F
Frx Fkk ok P | Fk

so that:

*

%Lp* 1 Fop Frk TR
e P | Frx Frxr Fr |

Q,

Note that the matrix:

Frr Frk
Frg Fkrk

is negative definite since F (L, K) is concave and thus

A Fop Fog |7
Frx Fgk

is also negative definite.
Now from:
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we have:
0 _ OF (L' K"OL  OF (L', K)OK* _ L . OK"
oP oL op 0K oP — “Ltop TTEHp
aL*
= [FL FK]{OGI?*}
P
—1
_ _l[ OF(L*,K*) OF(L*,K") } Fr Frk Fr,
P oL oK Frx Fri Fg
= —%xTAa:
where:

_| I
T = { Fre ] #£0
since F, > 0 and Fx > 0. Since A is negative definite and x # 0 it follows that:
2T Az < 0 and so:

oQ* 1 -
=—=x"A 0
ap P 7
and the supply curve slopes upwards.
We now show that 2 g@w’m = 9L (5 I’DW’R). Using the total differential

and calculating %{;’Dﬂl first from:

[pFLL pFLKH%LP}:[FL}

*

OK*
PFrx PFgik 5P

and defining:
_ [ PFy;, PFri }

PFrx PFri
we find that:
det —F;, PFrx
OL* | —Fx PFkx
oP det [H]
—PFrFgg + PFgFri
det [H]
Now we calculate w from:

using the chain rule it then follows that:

Q"  OF(L*,K*)oL* n OF (L*, K*) 0K*
ow oL oW 0K ow
oL* oOK*
= FLW +FK_8W
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Now from:
PFyp, PFLKH%V* }{1]
OK™ -
PIrx PFgg alv(v 0
we have:
oL*  PFgxg OK*  PFrk
OW — det [H]" oW T det [H]
so that:
3@* oL*
" (r [ ]
ow [ ] s
PFri
= [FL FK] j}ﬂrH[]K ]
det[H]
_ B PFgi PFr i

det [H] " " det[H]
_ ([ —PFLFkk + PFgFri
N det [H]

oL
oP"

The following 5 problems are based on the following information:
Consider the Cobb-Douglas production function:
Q=F(L,K)=L>K?

which is homogeneous of degree % + % = % < 1. The real profit function
m(L, K,W, R) is then given by:

m(L,K,W,R) = L*K% —wL — rK
where w is the real wage and 7 is the real rental cost of capital.
Problem 41 Find the first-order conditions for mazximizing profits and the

profit mazimizing levels of labour and capital L* and K*. Let I* = In(L*)
and k* = In(K*). From the first-order conditions show that:

CanAIEES
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Answer

The first-order conditions are:

1 1_ 1 1 1
Loyt —w = 0= (2 1)+ ik = w)
2 2 3

1 1 1_ 1 1

g(L*)2(K*)3 Loy = 0:>§l*+(§1>k‘*ln(3r)

so that writing this in matrix notation the desired result follows.

Problem 42 From the matriz expression in find I*(W, R) and k*(W, R) using
Cramer’s rule. From these expressions show that the elasticities of demand for
labour and capital are negative or that

ol* (w, ) %

-1
—8ln(w) = —1_(%+%) <0 and
ok*(w,r) %—1 -0
oln(w) 1—(%—&-%)
Answer
‘We have:

1L_q 1 1 1 1
det | 2 3 — 1 _Z ==
SIRFRIFERUEIES B BY-

so that using Cramer’s rule:

r 1
det 111111((?;:)) 12y
(w,r) = T 3l = = —41In(2w) — 21In(3r)
det 2 1 1 3
3 3 1]
[1-1 In(2w)
2
y det 1 In(3r)
E*(w,r) = TI 1 I 3 —3In(3r) — 31In(2w).
det 2 1 1 3
3 3 1]
It follows then that:
ol* (w,r)
L0
D) < 0 and
Ok* (w,r)
D _ 3<o.
0ln(w) <

Problem 43 Find L*(w,r) and K*(w,r) from the expressions for I* (w,r) and
kE*(w,r) you found above. Verify from these that:
oL*(w,r)  OK*(w,r)
ar  ow
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Answer
‘We have:
* _ * _ L —4,.—2
L*(w,r) = exp(*(w,r)) = 144w r
* _ * _ L -3,.—3
K*(w,r) = exp(k*(w,r)) = 216w r
from which:
oL*(w,r) 1 4 4
ar - TR T
OK*(w,r) 1 4 5
ow - _72w "

and so they are both equal to each other.

Problem 44 Show that the second-order conditions for profit mazimization are
satisfied.

Answer

The Hessian of 7(L, K, w,r) with respect to L and K is:

fony folats
H(L,K) = 9L ‘95297{(]
dLOK  OK?
_ p[ TaliKD gLtk
lr—2K—35 23K 3
6 9
so that using leading principal minors:
1
M, = P(—ZL—EK%><0
17—-3 -1 1y—L,--2
—=72K3 =L 2K"%
_ 1 6 .
M = det<P[ bkt J2rikcd D

— _—_P2[%32K5 >0,

Problem 45 Show that the profit function

7 (w,r) = w(L*(w,r), K*(w,r),w,)

s given by:
* = 3,2
™ (w,r)f432w r
From this show that:
—8778(;0,7“) = —L*(w,r) and
Om(wir) ().

or
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Answer

‘We have shown that:

L*(w,r) = exp(*(w,r)) = lelw_4r_2
K*(w,r) = exp(k*(w,r)) = %w—ST—s
so that
7 (w,r) = (L*)% (K*)% WLt — rK*
3 1
_ (ﬁw—%—z) ’ (ﬁw—sr—:s) ° wﬁw—%_z 3 rﬁw_%_g
e
It follows then that:
W R
= e
37r*§;wr) _ oy ﬁw*:” L

The following 5 problems are based on the following information:

Consider the Cobb-Douglas production function:
Q=F(L ,K)=L*K", with a4 3 < 1.

This generalizes the previous set of problems by replacing % with o and % with
B. The real profit function w(L, K, W, R) is then given by:

(L, K,W,R) = L°K® —wL — rK
where w is the real wage and 7 is the real rental cost of capital.

Problem 46 Find the first-order conditions for maximizing profits and the
profit mazimizing levels of labour and capital L* and K*. Let I* = In(L*)
and k* = In(K*). From the first-order conditions show that:

A IR N ey
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Answer
The first-order conditions are:
a( LK —w = 0= (a—1)I" + Bk* = In(w/a)
BN (K —r = 0= al"+ (8- 1)k =In(r/p)
so that writing this in matrix notation the desired result follows.

Problem 47 From the matriz expression in find I*(W, R) and k*(W, R) using
Cramer’s rule. From these expressions show that the elasticities of demand for
labour and capital are negative or that

ol (w, r) 8-1

on(w) ~ I-(axp 0w
ok*(w,r) a—1
omw) ~ 1-(@xp -V
Answer
‘We have:

det[aa1 ﬁ€1]1a5

so that using Cramer’s rule:

o [ I(w/) B
l*(w 7,) _ L ln(r/ﬁ) /671 l /671 ln(w/a)—L
’ dt'a—l B ] 1—(a+p) 1—(a+0)
¢ |« p—1 |
det a—1 In(w/a)
e = b DL el g O
det a;l ﬁﬁl 1—(a+p) 1—(a+p)

Since In(w/a) = In (w)—In (), In(r/B) =In (r)—In (5) , 1—(a+5) > 0,8-1 <0
and o — 1 < 0 it follows then that:

or(w,r) 68—-1

on(w)  1-(atp ~0and
ok*(w,r) a—1 0
dn(w)  1—(axp) "

Problem 48 Find L*(w,r) and K*(w,r) from the expressions for I* (w,r) and
kE*(w,r) you found above. Verify from these that:
oL*(w,r)  OK*(w,r)
ar  ow

In(r/B)

In(w/a).
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Answer
We have:
. . w\ T3 [T )
D) = e () = (2)77 (3)
2 e e
o) = ew (i) = (2) T (3)

from which:

8L*(w,r) _ _L (g)% —%—1
or B 1—(a+p) !

OK™*(w,r) B «
ow

“ a—1
(w)—m—l r 1—(a+p)
o B

a 1—(a+p8 _a—1
w) — T T <r> I=(+B)

g

B—1 a—1
= (at5) <7“> 1olete)

Problem 49 Show that the second-order conditions for profit maximization are
satisfied given that a + § < 1.

- ~(=e)

and so they are both equal to each other.

Answer

The Hessian of 7(L, K, w,r) with respect to L and K is:

oty oy
oL? OLOK

H (L, K)

_ pla (a—1)L2KP  aBLe 1KA-1
- aBLe KA1 B(3—1) LOKA2
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so that using leading principal minors:

M

M,

= Pa(a—1)L*2K" <0 (since 0 < a < 1)

ala—1)L*2KP oL KA1
det <P { aBLOLKBT §(5 — 1) [OKP-2 D

=PI ((a(a-1)8(8-1) ~ (aB)’)
= afP’L*2K?72(1 —a— ) >0 (since a + < 1).

Problem 50 Show that the profit function

s given by:

7 (w,r) = 7(L*(w,r), K*(w,r),w,r)

™ (w,r) = ((1 —(a+0)) aTTaT ﬁl—<§+ﬁ>) wl—(atiw rl—(«ﬁrw .

From this show that:

Answer

or*(w,r) .

o = L*(w,r) and
or*(w,r) .
5 = —K*(w,r).

Simplifying we have:

so that

7 (w,r) =

) w\ = (1) T
L (’LU,T) = (E) B

1—3 3 3—1 _ 3
= al—(a%)ﬁlf(aw)wk(aﬂ%)q« T—(athB)

a—1
« W\ ~T=taxmy [T\ 1A

a 1o _ a a—1
= ak(a#ﬂ)ﬁlf(aﬂﬂw T—(a+B) r1—(at8)

(L) (K*)? —wL* — rK*
B

1-p8 8 B—1 __ B a o 1—a o« a—1
<a1*(a+ﬁ)/61*(a+5)wlf(aJrLf)fr 1—<a+ﬁ>) (alf(wrﬁ)ﬂl*(aﬂf)w 1—<a+ﬁ>r1—<a+ﬁ>)

1—3 3 B—1 _ 8 o l—a _ o a—1
—waT=(+8) ﬂ T—(atB) I-(aFp) pr I-(a¥B) — pol-—(ath) ﬁ T—(a+B) qy 1—(aFB) pT—(aFp)

e B8 —a —8
aT=(F0) B1=(Fm 1=+ r T-(oF5)

1-3 8 —a -8 o l1—a —a -8
—qT=(@+h) ﬁ I—(atB) I-(aFph) pI—(atph) — yI—(aFh) ﬁ T—(a+8)  1—(a+B) rT—(a+B)

—a -8 o 3 1—3 3 o 11—
wWwTI=@+8) r1-(a+8) ( aT—(aFB) ﬁ17<a+ﬁ) — aT=(@FB) ﬁlf(aﬂﬂ — qT-(@+®) ﬁlf(aﬂs))

o B 1-B—«a 1—a—p —a -8
al—(aﬂf)ﬁlf(aw) (1 — T-(aFB) — ﬁl—(aﬂf)) WT=(F8) rT=(aFBh)

QT GTTD (1 — o — §) wT= D =,
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It follows then that:

67'(*(10,7") —Q —_— £} —a___q —
= AT BT (1 —a — B wT=—@rm  rT-(ath
Ow 1—(a+p) b ( f)
= —qT g AT o T L T
— faul(;ﬁm51454&)wlff;imr*l—(@m = —L*(w,7)
67'(*(10,7") *ﬂ o B e =B 3
= aqT=(+8) B1-(a+B) (] — @ — w T=(a+8) pT-(a+p)
or 1—(a+0) p ( 8)

1

B —a — 3 _
= —qT T BT arm Ty T=et® p T=(ar®

a 1-a _ a a-1
= T BTG TeFm =6t = —K*(w,r).

1.6 Utility Maximization

Consider a household with a utility function:

U (Qla QZ)
where:
ou (Ql?QQ) ou (leQ?)
U = ——=250,Uy=——""">0
' 201 2 Q>
Uy = U (Q1,Q2) Upy — 9°U (Q1,Q2) Upy — U (Q1,Q2)
0@t 003 0Q10Qs
and where the utility function is concave so that the Hessian:
Unn Uiz
H =
(Q1, Q) { o b ]

is negative definite.
Problem 51 Construct the Lagrangian for the wutility maximization problem
and derive the total differential from the first-order conditions.
Answer
The Lagrangian for the constrained maximization problem is:
LA Q1, Q2) =U(Q1,Q2) + A(Y — PiQ1 — P2Q2)
which yields the first-order conditions:

aﬁ(/\ 7Q1aQ2) — YﬁPlQik 7P2Q; =0

o\
ILOCLQLQY QLAY ey
90, = o, h=0
OLON.QLQ) _ W(QiQ) yop

0Q2 B 0Q2
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Here \*, Q% and Q3 are the endogenous variables while Y, P; and P, are the
exogenous variables. This leads to 3 implicit functions:

gl(A*aQT7Q;’Y7P17P2) = YﬁP]Q#liiPQQ;:O
oU (Q1,Q3)

92 (N, Q1,Q5,Y, P, P) = 50 — AP =0
1
0 (0,01 @sy PRy = ZERG) e g
Q2
which determines the reduced form:
AT =N (KPI,PQ)y
Q1 = QY. P, P,
@ = QY. P, P).
Note that A* > 0 since from the second order conditions:
o LOU(QLQy) 1 U Qi)
Py 0Q1 Py Q2
Taking the total differential we find that:
0d\* — PdQT — PadQ5 +dY — QidPy — Q3dP, = 0
—Prd\* 4 Up1dQ7 + U12dQ5 — N'dPy = 0
—Pod)\* + UmdQT + UQQdQ; —\dP, = 0.

Problem 52 What are the second-order conditions and show that they will be
satisfied.
Answer

The second-order condition for this problem is that the Hessian of £ (A", Q%, Q%)
given by:

0o - P

H=| -P Un Up

- Upp Usp
should have a positive determinant. Now
0 —-P —-P

det [H] = det| —P U;;x Ui = 7P12U22 + 2P, P,Uys — P22U11
—P Uy Uxn
Unn Ur2 P
= —| P, —P >0
R 1][(]22 U22:|{P1:|

since the latter expression is of the form —z” Hx with x # 0 and H is negative
definite.

Problem 53 Assume that Uiz > 0. Show from the total differential that Q1

is a normal good, that the demand curve for Qi is downward sloping and that

. Lo . G N
there is diminishing marginal utility in income or F= < 0.



CHAPTER 1. IMPLICIT FUNCTIONS AND TOTAL DIFFERENTIALS 45

Answer

From the total differential with dP; = dP>, = 0 we have:

o5
>
*

0 - B[ % 1
-P Un U % = 0
Py Uy Uxp % 0
—H
so that:
0 -1 —P
det | =P 0 U
Q7 P, 0 U | —PUxp+ PUp >0
oy det [H] B det [H]

since det [H] > 0 and Uz < 0 since the utility function is concave and by
assumption: Uio > 0.
We have for % then that:

-1 -P B
det 0 U Ui _ det [ Ui Ur2 ]
ON* _ 0 Uz Uz _ Uz Use <0
oY dot [H] dot [H]

since det[H] > 0 and the determinant in the numerator is positive by the
concavity of the utility function.
From the total differential with dP; = dY = 0 we have:

0 -PA P ar, Q1
-P Un U 3—?3;: = | X
_ 2Q
P, Uy U 3= 0
so that:
0 Q@ —-P
det *Pl /\ﬂ< U12
0Q; —P 0 U
8P1 o det [H]
Y —P1Ux» + PUss A" P Usy
! det [H] det [H]
oQ; )\*P22U22
= _QOF—=L _— 0
@oy T dem -

since det [H] > 0, we have already shown that %;- >0, \* >0 and Uy < 0.
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1.7 Cost Minimization

The following 2 problems are based on the following information:

Consider the problem of choosing the values of two factors of production
(say labour and capital): L and K which minimize the cost C given by:

C=WL+ RK
subject to the constraint that @ units are produced or that:
Q=LK3

where F(L, K) is the production function. The Lagrangian for this problem is
then given by:

LONLK,Q,W,R) = WL+ RK + \ (Q—L%K%)

Problem 54 Find the first-order conditions for this problem and solve for the
reduced form using the In () function to convert the first-order conditions into
a system of linear equations. To simplify your calculations you can accept (or
verify if you wish) that:

o L L 77t 13 2
1 A i _| & 3 3
1 2% 8 3 _3
2 3 5 5 5
Answer
‘We have the first-order conditions:
Q-LTK*3 = 0
1
W—§>\*L**%K*% =0
R—%A*L*%K*_% =0
so that:
1 1
Q- LK% = 0= Zl(L)+3(K)=n(Q)

w— %A*L*%*K*% 0= In(\*) + —% In (L*) + %m (K*) = In (2W)

R— %A*L*%K*%*l = 0=In(\)+ %m (L) — gln(K*) —=In(3R).
so that in matrix notation we have:
0 3 3 In (A% In(Q)
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Thus:
() 003 5 ][ @
n(L*) = 1 -1 3 In (2W)
n (K*) |1 % —% In (3R)
(L2 2] nE
1 g} 1n(2W)}

2Iln@Q — EIHQW—&- 2ln3R

LInQ+2m2Ww + 2In3R
g g or:
InQ+ £In2W — £1In3R

() = Q)+ 2m@W)+ 2 (3R)
In(L*) = gln Q) — éln W) + %ln (3R)
In(K*) = gln Q) + gln @W) — gln (3R)
so that:
* = L) 5 2]
A" = exp (3 H(Q)+g n(ZW)Jrg n(3R)>
= Q(@W)* BR)
= 2333QSWSRS
L = 6 | 2 | 2 |
= exp (3 n(Q) — E n(2W) + = n(3R)>

= QL W) R

= 927335QSW 3R
* 6 3 3

SN Sl [N

= Q¥(eW)* BR)

= 233 5QSWiR3.
Problem 55 Show that the cost function for this problem is:
C QW R) = (27%3% +2337%) Qfw i R

and verify that:

0 A(Q, W, R)
o (Q,W,R) .,
—ow L™ (Q,W,R)
9C" (Q. W, R) = K*(Q,W,R).

OR
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Answer

‘We have:

C*(Q, W, R)

W x L* (Q,W,R) + R x K* (Q,W, R)
2

= WxQ%2W) ?(3R)?
YR x Q% (2W)? (3R)”

al

il

= ( -23% +2%3—%) QSW3 RS,
We then have:
aC* (Q,W, R) 0 [o_2.2 3,3\ ~6.:,8 2
- ¥ 7 = — (27535 25375 sW3sRs
20 aQ( * )@

6 /. _2.2 3,3\ ~L1..,3 2
— 5(2 233 4933 O)QOWORO
= 2835QSWIRE = X" (Q, W, R)

and
9" (@ W, R) (an’VW’R) _ %(‘%3%+2%3‘%)Q%W%R%
_ % 2-t3t oty-t) Qtw iRt
= 273335QSW 3RS
= L'(Q.W,R)
and
oc™ ((%VW_’ R _ % (2*%3% + 2%3*%) QSWER?
= 2 (ot rotat)Qtwin
233 5QSWiR"?
= K'(QW.R).

The following 2 problems are based on the following information:

Consider the problem of choosing the values of two factors of production
(say labour and capital): L and K which minimize the cost C' given by:

C=WL+ RK
subject to the constraint that ) units are produced or that:

Q=L"K"
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where F(L, K) is the production function. The Lagrangian for this problem is
then given by:

LN L, K,Q,W,R)=WL+RK+\(Q—-L*K")

Problem 56 Find the first-order conditions for this problem and solve for the
reduced form using the In () function to convert the first-order conditions into
a system of linear equations. To simplify your calculations you can accept (or
verify if you wish) that:

0 « 8 -t 1 l-a—-8 o B
1 a-1 8 = 1 -6 B
1 « 6—-1 atp 1 a -«

Answer

We have the first-order conditions:
Q—L*“K*8
W —a\ LK =
R—BNL*K*P~1 = 0

so that:

Q-L*K"* = 0= aln(L")+FIn(K*)=In(Q)
W —aXN LK = 0=In(\*)+ (a—1)In(L*) 4+ BIn(K*) =1In <%>
R—BNLK*! = 0=In(\)+aln(L*)+(8-1)In(K*)=1In <§> .

so that in matrix notation we have:

0 3 In (\*) In (Q)
1 ail 3 In(L*) | =| M (%)
1 a pg-1 In (K™) In (%)

Using the adjoint and determinant we have:

0 « 8 ! 1 l—-a—f8 o pB
i a—1 8 :aJr/B i — B

g
Q 6—1 a  —a«
so that:
In (\*) 0 « g 17" (@)
m() | = |1 a-1 8 In ()
In (K*) 1 a pg-1 In ( )
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\ws (W\F R\
Q o+ — _
(%) (5)

e __B l—a—p o B
Q BT e+8 Q) ets W ats Ra+p

L L*(Q,W,R)
L /WN\ T SR\ T
e (7
a B
— oTFTHFQTFW P RaP
K* = K*(QW,R)

(W == R k=
= (3) ()

= o @BREIFQTAWStF R YR
Problem 57 Show that the cost function for this problem is:
C*(Q.W,R) = (a+ B)a” =7 3~ =7 Q=in W7 R

and verify that:

—a A (Q,W,R)
ocr (QW.R)
—y = L(@QWRER)

OR
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Answer
‘We have:
C*(Q,W,R) =

WxL( W, )+R><K*(Q,WR)
= Lﬂ a+ﬁQa+HW a+ﬁRa+5
+R x a*a_ﬂfﬁaﬂsQaquwR =7
— (az%g—z%+a—ﬁ5ﬁ)QﬁwﬁRa%
— oA getr <%+l> QT W=ts R=15
«

= (a+f)a TP QP W EE Ra15.

1.8 Homogeneous Functions

Problem 58 Show that the function

f (wr,2) = (21 +3/m2)

18 homogeneous and determine k.

Answer

‘We have:

ol

ol

f Az, Azp) = (2\//\_:v1+3\/E)
(»*

A (271 + 3@))

= A2y +3vam)t
= A%f(iﬂl,xz)

so the function is homogenous of degree k = %

Problem 59 Show that

Q=F(LK)=5L"K"

is homogeneous and determine k.

Answer

‘We have:
F (AL AK) =5(AL)* (AK)? = X*A%5 (L)* (K)® = A5 (L)* (K)” = \**PF (L, K)

so that F (L, K) =5 (L) (K)” is homogeneous of degree a + £3.
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Problem 60 Show that if f (x1,x2) is homogenous of degree 1 then the Hessian
of f (x1,x2) is singular for all non-zero 1, xa.

Answer
If f (w1, 2) is homogenous of degree 1 then both af(x;’@) and 8f(g;2’x2) are
homogeneous of degree 0. By Euler’s theorem:
Oaf (z1,72) _ 82,70(33127 T2) L+ 32f($1,$2)$2 -0
Oxq Oxy 0x10x
Of (x1,72) O f (w1, x2) *f (x1,x2)
0————= = =0
Oxs 0x1022 Tt Ox2 2

or in matrix notation:

2f(wrag) 02 f(z1.a)
Ox? 0x10x2 1| _ 0
P flzi,me) 9% f(z1,@2) To 0

Ox10x2 Ox10x2

which is of the form Hx = 0 where H is the Hessian. Since z # 0 it follows that
H is a singular matrix.

Problem 61 Show that:

2 15\ ¢
Q=F(L,K)= (§L—3 + §K—3>

is homogeneous of degree 2.

Answer

Since:

W

F(AL,AK) = <§ (AL)3+%(>\K)3>

a2 . 1\
= ) S R g
</\ (3 +3
2
3

2 1 B
_ )\2 _L—3 —K_3
<3 T3

= MNF(L,K).

wlo

Problem 62 Show that the Constant Elasticity of Substitution or CES produc-
tion function:

Q=F(L,K)=(al’ + (1 —a)K")?

is homogeneous of degree ~y.



CHAPTER 1. IMPLICIT FUNCTIONS AND TOTAL DIFFERENTIALS 53

Answer

Since:
FOLAK) = (a(AL)+(1—a)(\K)")?
= (N (aL’+(1—a)Kr)?
= (\")7 (@l + (1 —a) K*)?
— XN (oL’ +(1—a)K?)?
= NF(L,K).

Problem 63 Use Fuler’s theorem to show that if Q = F (L, K) is homogeneous
of degree k and if the firm pays labour and capital according to its marginal
product so that MFGLL—KZ = % and MFO%—KZ = %, then the firm receives positive,
0, and negative profits according to whether k <1, k=1 or k > 1.

Answer

By Euler’s theorem:

OF (LK) . OF (L, K)
kQ) = L K.
@ oL “ T T oK
Since % =% and % = & we have:
w R
kQ= L+ 5K = kPQ = WL+ RK

and so profits m are given by:

m = PQ—-(WL+RK)=PQ—-EPQ
= (1-k)PQ.
Thus if 0 < k < 1 (there are decreasing returns to scale) then 7 > 0 while if
k = 1 (constant returns to scale) then = = 0. If k& > 1 then profits must be

negative, which is indicative of the fact that increasing returns to scale are not
consistent with perfect competition.

Problem 64 Suppose that the profit function is given by:
1

7 (P,W,R) = (a1 P* + aaW* + agR")

where a > 0. Show that this is homogeneous of degree 1.
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Answer

‘We have:

L
a

T (AP, AW, AR) = (a1 (AP)* +aa (W)* + a3 ()\R)a)
= (A% (a1 P* +a2W“+a3Ra))
= (¢ )i (a1 P + agW* —i—asRa)%
= ANar1P*+aW*+ a3R°‘)
= Aa* (P,W,R)

so it is homogeneous of degree k = 1.
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Duality

2.1 Profit Maximization
Problem 65 Suppose the clever profit function is given by:
™ (P,W,R) = 30P5W 3R"3.
Using this information calculate the firm’s supply curve: Q* (P, W, R) as well as
the factor demands: L* (P,W, R) and K* (P,W,R).
Answer

The desired functions can be obtained from differentiating 7* (P, W, R) us-
ing Hotelling’s lemma as:

Q*(P,W,R) = %(30P%W—%R—%)=80P%W—%R—%
L*(P,W,R) = —% (30P3w#R~%) —a0P3w R~
K*(P,W,R) = —% (30P3W#R"%) = 10P3W 3R~

Problem 66 Suppose that the profit function is given by:
7 (P,W,R) = (a1 P® + asW® + a3R®) =

where a > 0. Find the firm’s supply curve and factor demand curves, and show
that ap >0, az <0 and az < 0.

95
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Answer

From Hotelling’s lemma we have:
or* (P,W,R)
OP

0
= 6_P (CLlPa + asWe + agRO‘)

= (a1 P+ aaW* + agR‘“)%*1 a P
Since Q* (P,W, R) > 0 and all terms except a1 in Q* (P, W, R) are positive we
require a; > 0. Similarly we have:
or* (P,W, R)
ow

a1 P% + ao W + agRO[)é

Q" (P,W,R) =

Q=

L (PW,R) = —

0
~5i (
= —ayW! (a1 P + aa W + agRD‘)é_l .
Since L* (P, W, R) > 0 and all terms except —ag in L* (P, W, R) are positive we
have —as > 0 or as < 0. Similarly we have:
or* (P,W, R)
a OR
0 (a1 P* + aaW* 4 a3R%)
OR
= —agR* (a1 P + a;We + agR‘“)%_1 )
Since K* (P,W,R) > 0 and all terms except —ag in K* (P, W, R) are positive
we require —asz > 0 or az < 0.

K*(P,W,R) =

Q=

Problem 67 If we were to add another exogenous variable temperature T to
the production function so that Q = F (L,K,T) with %g%ﬂl > 0 (higher
temperatures increase output), show that

or* (P,W,R,T) OF (L*, K*,T)

oT =P—r <0

Answer

We have the naive profit function:
m(L,K,P,W,R,T)=PF (L,K,T)— WL — RK.

From the envelope theorem:

o (PW.RT) _ Or(LK.PW.RT)
oT - oT L=bn =k
_ pOFWLKT)
= a7  l=Lt K=K
OF (L*,K*,T
= P—( —— )<0.

or
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Problem 68 Using total differentials prove that
T (w) = f (L (w)) —wL* (w)
is convex gien that when Q = f (L) with f' (L) >0 and f" (L) < 0.

Answer

From the first-order conditions for profit maximization we have:

ffiL—w = 0= f"(L*)dL* —dw=0
e 1
d’wif”(L*) :

Now using the chain rule we have:

W) e W) L)
Wy )
=0
- T @) ot W)

- L)
so that:
P (w)  dL* (w)

dw? dw >0

so that 7* (w) is convex.
The following 2 problems are based on the following information:

Consider a firm with a production function:
Q=F(L,K)=L'?K'/3
so that the naive profit function is:
7 (L,K,P,W,R) = PL'?K'/3 — WL — RK.

Problem 69 Using this information derive the firm’s demand for labour L* (P, W, R),
the firm’s demand for capital K* (P, W, R) and the firm’s supply curve Q* (P, W, R)
from the first-order conditions.

Answer
We have:
or (L, K) 1
=Y _ _pLY2R1/3 _
oL 2 w
or (L, K) 1

— _PLI/ZK—Z/?)_R
oK 3
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so that the first-order conditions become:

PR L ey~
% - %P(L*)I/Q (K*)fz/s _R=0
so that:
(L2 (k1Y = 2% . —%ln (L) + %ln(K*) n <2¥>
(L2 (k)23 = 3§:> %m(L*)—%ln(K*) I <3§>,

Combining these two results and using matrix notation we find that:

RENEEE ]

P
with:
_1 1 1
det[ ? 3 ] =-.
2 73 6
Hence using Cramer’s rule:
(I (2%) 1
det B 3
. In(38) -2 w R
In(L*) = - %P 3 = =4l <2?>—21n <3F>
(1 (21
det ? 2
. 5 ln(3ﬁ) w R
In(K*) = - 2% L -=—31n<2?)—31n<35)
so that:
* AN AN L 6r—4 p2
L*(P,W,R) = <2?> (3F> f144PW R
* W\ LR\ L 61173 p-3
K*(P,W,R) = <2?> (SF> _TGPW R™".
Therefore:
Q* _ (L*)% (K*)%_ LPGW_4R_2 % Lpﬁw—?)R—S %
B - \144 216
N Y S S
= 72PVV R~
Problem 70 Find the clever profit function:
7 (P,W,R)

and show that it is homogeneous of degree 1. Now use Hotelling’s lemma to find
L*, K* and Q* from 7* (P,W, R) and verify that you get the same answers as
in the above problem.
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Answer
We have:
™ (P,W,R) = PQ*(P,W,R)—-WL"(P,W,R)— RK"(P,W,R)

1 1 1

= P5P5W_3R_2 _ WmPGW_“R_Q _ R%PGW_?’R_?’
1 1 1

R

1
= HPWURT

Adding the exponents we see that 7* (P, W, R) is homogeneous of degree k =
6+-3+-2=1.
We can verify Hotelling’s lemma since:

or* (P,W,R) 0 L 6rr—3 -2
opP - opP <432PW "
6
— _P5 -3 p—2
el WOR
1
= EP‘L"W*SR*Q:Q*(P,W,R)
or* (P,W, R) _ 0 L 6rrr—3p—2
oW oW (432PW R
_ 3 6 —4 -2
= —glWR
= fﬁPGW*‘*R*Q:fL*(P,W,R)
or* (P,W, R) _ 0 L 6rrr—3p—2
OR ~ OR <432PW R
— 2 6117 —3 p—3
= —mlWR
1
= —mPGW*?’R*?):—K*(P,VV,R)

2.2 Utility Maximization

Problem 71 Suppose that a household mazimizes utility U (Q1,Q2) subject to
the budget constraint Y = PiQ1+ P2Q2. The resulting clever (or indirect) utility
function turns out to be:

2
U (P, P Y) =Y (P I oy 5)3.

Use this information to determine the Lagrange multiplier \* and the demand
curve Qf (Py, P2,Y). What is the income elasticity for Q17
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Answer

‘We have:

. _ _lyapt L pYS
A <P17P27Y) - aY _3Y 3(P1 +P2 )
oU* (Py, P,,Y) 1 2 1( -5

oP 2 3

so that:

U™ (P1,P,Y

P
Q1 (P, PY) = *W
Y

1
-3 -3
2

ivi(p-3 -3
WP+ R?) T H

1
2

2

_z -3\3
et (PR

——I I
P+ P

The income elasticity is the exponent on Y or 1.

The following 3 problems are based on the following information:

Suppose you are running a prison. Inmates in the prison consume only
two goods: @ and @y (say bread and water) which have prices P; and Py
respectively. You as the warden, having no control over prices, wish to choose
@1 and @2 so as to minimize the expenditure F on each prisoner given by:

E=PQ1+ PQo.

Prison regulations stipulate that each prisoner’s utility be a certain minimum
amount, say Uy, so that your constraint as a warden is that @1 and ()2 must
satisty:

Uo=U(Q1,Q2) =aln(Q1) + (1 —a)In(Q2) .

Problem 72 From the Lagrangian find the first -order conditions for the prison
allocation problem and solve for the optimal values. Find

E* (P1, P>, Up) = P1Q7 (P1, P2, Up) + P2Q5 (P1, P2, Up) .

Answer

‘We have:

LA Q1,Q2, P, P,Up) = PiQ1+ P2Q2 + A(Up —aln(Q1) — (1 — o) In(Q2))
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so that the first-order conditions are:

Up —a1In(Q7) —axIn(Q3) =

61

0= Uy =aln(Q})+(1—a)n(Q)

» 01 . Na
P, — )\ - 00— O =
1 Or Q7 Pr
5« Q1 * )‘* (1 B O[)
P — )\ = O = =
2 5 Q5 22

Placing the second and third results in the first results in:

Uozaln(

so that solving for \* we have:

X=X (P, P, Uy) =

A;f‘) +(1-a)hn <%{:O‘))

ebopep,

ac(1—a)'™®
so that:
o elopapl-a
= QPR = s —
Q1 Q1( 1,42 0) Py o (17001704 P
N(l—a)  ePpPrpPy™ 1-—a
5 = s (P1, Py, Uy) = =
QQ QQ( 1,472, 0) P, O[01(1_0[)1—04 Py
Now:

E* (P17P27U0) -

a* (1 - a)

Problem 73 Verify that:
Qik (P17P23U0) =
Q;(PLPZ?UO) =

>\* (P17P23 UO)

*

0Q7 _ 0Q
and show that 8—;- = 5p+-

PQ1 + PQ;
PP o
e (1-a)' P

Uy pa pl—«a
e”OPi Py
l—-a”

PPy 1—a
ac(1—a)'™ P

2

OE* (P1, Py, Uyp)
oP; ’

OE* (Py, P, Uy)
0P,

OE* (P1, Py, Uyp)
oUy ’
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Answer
We have:
OE* o [ eYopppy© eopp=tpy=»  elopppi=® o .
0P, - OP, ; 21_‘1 =a - 21—06 = - 21—a_:Q1 (P17P27U0)
1 1\ a2 (1 —a) av (1 —a) av(l—a) P
OE* G, elo papi—« ebopapi-a=t  clopapl=a 1 _ 4 .
5P, — 3B 1 217(l =(1-0) 112 — = 149 — — Q:(P1, Py, Up)
p > \a® (1—a) a® (1 —a) a® (1 —-a) Py
OE* o [ eYoprpp eVopptpy—«
= = =\ (P, P2, Up) .
8U0 8U0 (aa (1 o a)l*ﬂé ac (1 _ Oz)lia ( 1,12 O)
Furthermore:
o0* o Ug Pa—lpl—a Uo P‘)‘_lP—U‘
[ . My By N{ R e
6P2 6P2 o (1 _ a) ad (1 _ a)
o0 o Ug Pocplfafl Uo PQ,IP,Q
% = o5 (1_04)61—21,(l Za(l—a)—e L o
6P1 6P1 o (1 _ Oé) a (1 _ a)

2Qr  0Q:
T
and so 5h = o0

The following 2 problems are based on the following information:

Suppose that the household has to pay income tax on Y: t,, and a tax on
@1 of t; so that the budget constraint becomes:

Y x (17ty):P1 X (1+t1)Q1+P2Q2.

Problem 74 Let U* (Pi, P»,Y,t,,t1) be the resulting clever utility function.
Find the appropriate modification of Roy’s identity that would allow you to cal-
culate Q7 from U* (Py, P>, Y, t,,t1).

Answer

The Lagrangian for this problem is:

L(AQ1,Q2, P, Py, Y ty, 1) =U (Q1,Q2) + A (Y x (1 —t,) — Py x (1+11) Q1 — PQ2).

Thus:

U* (P1, Py, Y, t,, 1) 9
8Y Y = Wﬁ (A, Q1,Q2, P, P2, Y by, t1) [x=x*,01=0Q1 Q2=
A1 =1ty) [x=x*.01=0Q7.Q2=Q;

A" (1 - ty)
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and
8U* <P17P27}/7ty7t1) 8
= =L\ P, P Y t,,t Nt OO (e
P OP; (A, Qu, @2, Pr, P2, Yoy, 1) [a=x.01=Q1.Q2=Q3
= 7)\ (1+t1)Q1‘)‘:)‘*7Q1:QT7Q2:Q§
= N (1+t)Q7.
Thus:
OU* (Py,P,Y,ty,t . . .
wﬁ N (1—t,) 1—t,)
so that:
(1—t,) QU™ (P1, Po, Yty t1)

Q* oP;
1 * .
1 OU~ (P1, P2, Yty ,t1)
( tl) Y

Problem 75 Using the envelope theorem calculate:

8U* <P17P27}/7ty7t1) 8U* <P17P27}/7ty7t1)

d .
ot, o oty
Use these results to show that
ou* oU*
ot ' oty

is the budget share of good 1 or equivalently that:

au*
Qi — gL
U .
oty Py
Answer
We have:
OU* (Py, Py, Yty P
( 18t2 wph) %ﬁo\anaQZaPl:P%Yatyytl)‘A:A*,leQ;‘,szQ;
Y Yy
= —AYa=r,01=01.Q2=qs
-\'Y
and
OU* (Py, Py, Y b, t )
( 16t21 wh) a—tlﬁ()\,Qsz,Pth,Kty,h)\A:,\*,QFQ;,QQ:Q;

= —AP1Q1|x=2",01=0;.0.=q;
— PO
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Thus:
U (P1,P2,Y ty t1)
— 5 N'PQy PQ; budget share of @
WELRYLE] T T oNY Y 1.
at,
or:
ou*
Q* _ Ot i
17 au* p -
ot T

The following 3 problems are based on the following information:

Consider the household’s problem of maximizing utility as a function of three
goods: U (Q1, @2, Q3) subject to the budget constraint:

Y = PiQ1 + P2Q2 + P3Qs.

Problem 76 Set up the Lagrangian for this problem and find the first-order
conditions. Show from the first-order conditions that:
MU, MUy, MUs

— — )\
Py P Ps

Answer

We have:

L=U(Q1,Q2,Q3) + A (Y — PLQ1 — P2Q2 — 3Q3)

so that the first-order conditions are:

Y —PQi - PO, - Qs = 0
W(Qg’%éf;’%‘wl =0
BU(Q;%QC?%_A*PQ =0
aU(Qg’%QCi;’Q;’)A*Ps = 0.

Since MU; = 8U(Q{;§*’Q*) we have the desired result.

Problem 77 Using the envelope theorem, prove that \* is the marginal utility
of income. Prove Roy’s identity; that is how to calculate QF (Py, P2, P3,Y),
from the clever utility function: U* (P, P2, P3,Y).
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Answer
‘We have:
ou* (P17P2,P3,Y) o a‘C(>\7Q1aQ2aQ3aP17P27P3aY)
oY - oY lQi=qi A=y
= A@i=Qr.a=x
= )\*
and:
oU* <P17P27P37Y) _ 8£<)\7Q17Q27Q37P17P27P37Y) . .
oP, oP, Qi=QA=A
= —AQ1|Q.=0;a=x
= NG
so that:
oU* (Py,Py,P3,Y .
e e e .
QU*(Py,P>,P3,Y) A el
oY

Problem 78 Consider making this problem an unconstrained mazximization prob-
lem by using the budget constraint to solve out Q3 as:

_ Y - PiQ1 — PQ>
Py '

Qs

Thus mazimizing U (Q1, Q2,Q3) subject to the income constraint is equivalent
to the unconstrained problem of mazimizing:

V(QlaQ?aP17P27P3aY)

over @1 and Q2 where:

V(Q1,Q2 P, P, P Y)=U (Ql’Q% Y - PiQi — P2Q2> .

Py
Let
V* <P17P27P37Y) = V(QT?Q;7P17P27P37Y)

be the clever version of V. Use the envelope theorem to show how to calculate
QT (Pl, PQ, Pg,Y) from V* (Pl,Pg, Pg,Y) .
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Answer
‘We have:
wy_
oV* (P, Py, P3,Y) ou (QI’Q% RO
W _ Y |Q1:QI7Q2:Q§
Y-_PQi=PQ>
1 8U (Q17Q27Y PlPl3 - 2)
_ _FP’ 50, ‘QIZQT,Q2:Q§
* x« Y—P 1= P20
B 1 8U (Q1>Q27—1QI§3—2Q2)
- R Q3
__10U@1050) _ MU
Py 9Qs Py
and:
Y—PQ,—PQ
ovV* (P, Py, P3,Y) ou (Qth7 %)
P, - oP| i
Y-PQi=PQ>
il s o
- 5 30 |Q1=01.@2=q;
* * Y-P 1—P 2
B _@8(] (Q17Q27—1QP1%]—2Q2)
Py Qs
QiU (Q1,Q3,Q3) _  Qf
_ =197 W3 Xl
Py 0Qs P
Therefore:
OVI(Py, Py PyY) Q)
oV PbllslzPsY B %MU;; -
TWRLEY) C M - Y
oY Py

Problem 79 Consider a Cobb-Douglas utility function with n goods:
U=oa1In(Q)+aIn(Q2) + -+, In(Qy)
where: a; > 0,
art+ag+--Fa,=1
and the budget constraint is:
Y =PQi+PQ2+ -+ P,Qn.

Find the utility maximizing values of QF and use this to construct the indirect
utility function U* (Py, Py ..., P,,Y). Verify Roy’s identify:
AU* (P1,Ps... \Pn,Y.

Qf = — oP;
© T QU (PP P Y) "
E)%

Verify that U* (P1, Pa ..., P,,Y) is homogeneous of degree 0.




CHAPTER 2. DUALITY 67

Answer

The Lagrangian is:

,C()\,Ql,QQ, .. Qn) = a1 In (Ql) + (0% In (QQ) +---+ 7% In (Qn)
FAY = PiQ1 — P2Q2 — - — PQn)

so that the first-order conditions are:

OL (N, Q%,Q5%,...QF)

N = 0=Y -PQ] - RQ5— - —PQ;
OL(\",Q1,Q3,...Q}) o
901 g NN T rhG
OL(\",Q7,Q5,...Q}) Q2
= 0==-\'P, = \N"PQ5
Q. g NPT e e
a‘c(/\*aQ*7Q*7QT) . o * * *
5Qn2 A O:Q%—AP,L:»%:AP,L
Adding up the last n first-order conditions we have:
artartta, = NPQ+NPRQs 4+ N PQ;
= ot ta, =N (PQ]+ PQ5+ -+ PQ))
=1 =y
1
A==,
— Y

It then follows that:

a = NPQj
PQ;

‘We therefore have:

U (P,Py...,P,,Y) = agln(Q7)+aaln(Q3)+ -+ a,In(Q)

= ogln <£> + asln (£> +- 4 a,ln <a"Y>
Py Py P,
= ag(In(a)+InY)—In(P))+-+a,(In(a,) +In(Y) —In(P,))
In(Y)—ayIn(P)4+an(P)+ - 4+a,In(P,) —c

where the coefficient on In (V') is one since the «; s sum to 1 and the constant
c is:

c=ajln(ag) +asln(a) + -+ apIn(a,).
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‘We therefore have:

ou* (P, P,... P, Y) 1
Y Y
U* (P, Py...,PY)
op; P
so that:
_%w __,%Z Y pe
U (PLP2. PayY) L p it
— vy Y '

The clever utility function is homogeneous of degree 0 since:

U (AP, APy .. JAP,,AY) = In(AY) —agIn(AP) +asln(APy) + -+ + ap, In (AP,) —

= In(A) |1—-(v1+as+-+ay)
=1
+In(Y)—ailn(P)+aIn(P) + -+ a,In(P,) —c
= N () —arln(P)+azln(P) + -+ ann(P,) — ¢
=1
= \Nu*(p,P,...,P,Y)

and so U* (P, Py ..., P,,Y) is homogeneous of degree 0.
Problem 80 The CES utility function (Constant Elasticity of Substitution)

s given by:
n 1+p
Qi —1
U= ;| —m
; < L+p
where p < 0 . This includes the Cobb-Douglas as a special case where p = —1
since from L’Hopital’s rule it follows that:
) QL"—P -1
lim —=2— =1n(Q;).
Jim S =10 (Q)

Calculate the demand functions QF for the CES utility function and the in-
direct wtility function U* (Py, Py ..., P,,Y). Verify Roy’s identity. Verify that
U* (P, Py...,P,,Y) is homogeneous of degree 0. (Note: in this problem we
use the summation notation, covered in the next chapter, to make things more
compact. If you are uncomfortable with using this notation write everything as
a conventional sum, for example:

n 1+p 1

U =
Z 1 +p

=1

-1 37 —1 Qitr —1
= o W + as ﬁ +~-~+Om< 1+p >
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Answer

The Lagrangian is:
n 1+p 1
A, .
( Qh Q27 Z 1 +p
A (Y - ZPiQZ-)
i=1

so that the first-order conditions are:

ILN,QL D5, Qh) oo = N por
= = Ofo;PZQif0:>Yf;PZQi
E()\,Qggz,...Qn) 0= (Q) = NP — PQI = (V)P a })P;H
fori = 1,2,...n.

Adding up the implications of the last n first-order conditions we have:

Y = Y PQ;

Once we have the Lagrange multiplier we can calculate the demand curves using:
OZZ(Q;k)p—)\*PZ = 0=
Q= (W)ra” Pf

P PPY
L R .
DT
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Now:
* n Qikl-i_p -1
U Pl,PQ...,PT”Y = ai P —
( ) ; ( 1+
= _1 - ,Q*flJrﬂ 21;1 Q;
1+pz:1 o 1+p
n 11 1+p
_ LZ a; "PY DT
Lo "\so o 7Pt 110
—p .
_ yl+e n 7%P%+1 B Zi:l o;
1+p — 7 7 1+p
Thus:
n -p
oU* (P, Py...,P,Y) < o1 l+1>
9 ) 9 — Y/J Zai PEP
104 P
—p—1
8U*<P17P2~-.,P,L,Y) —pY1+P LY 141 1 <1 ) 1
= R ai PPiﬁ XO[Z»p _+1 Ep
oOF T+p ; p
no 1L —(1+p) L
- Y1+p Zai PPiP Q; pPzp
=1
so that:
—(14p)
OU* (Py,Py... \Py.Y) —yite <Z?—1 Oli_%Pi%Jrl) Oéi_%Pi%
U P17P2.1..,PmY = = N
™ vo(Sieltei )
_1 1
Q; pPiPY *
= —— 7 =0

1 1
1t
n P pDP
dic1y " P

2.3 Mark Maximization

The following 7 problems are based on the following information:

Consider the following abstract and irrelevant problem: a student has to
write an exam with n questions. He has 7" minutes to write the exam. Let ¢;
be the number of minutes he spends on question i. Suppose the marks he gets
for question 7 is determined by the function: M; (¢;) where:

M;(tz) > 0
le(tz) < 0.
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The Lagrangian for this problem is then given by:

LNty to, .. tn,T) = ZMZ- (ts) + A (T Zt)
i=1 =1

Problem 81 What in every day language is the objective and constraint in this
problem? What are the first order conditions for this problem? Using economic
terminology, what do these first order conditions express?

Answer

The first-order conditions are:

T-Yt =0
i=1
M/ (t5)— X" = Ofori=1,2,...n.

The first conditions states that the optimal solution obeys the time constraint
while the latter conditions state that

M (tf) =Xfori=1,2,...n
or that the marginal return on each question must be the same.

Problem 82 Will a solution to the first-order conditions be a global maximum?
What are the second order conditions using the bordered Hessian for this problem
for the case where n = 2 and show that these second order conditions will be
satisfied.

Answer

Since \* = M/ (t) > 0 and since the objective function is concave while the con-
straint function is linear, it follows that a solution to the first-order conditions
will be a global maximum.

We have:
0 -1 -1
det[H] =det | =1 M7 (t7) 0 | =M (t7) — My (t3) > 0.
-1 0 M (t3)

Problem 83 From the first order conditions show that \*(T') > 0. Let ¢} (T) be
the value of t; which solves the maximization problem. Consider the function:

M(T) = ZMi (&7 (T))

Use the envelope theorem to show that:

OMH(T) _ .

What then is the appropriate interpretation of \*(T)?
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Answer

Since M/ (t) > 0 then \*(T) = M/ (t;) > 0. Using the envelope theorem we
have:

oOM*(T 0
% = ﬁﬁ(AatlatQa-”tnyT)‘)\:)\*,ti:t;?
= AMa=ar =t
A (T).

Thus A*(T) is the marginal mark.

Problem 84 For the case where n = 2 and using the total differential of the
first order conditions, show that there is a diminishing marginal return to extra

time (%—¥ < 0) and that an increase in T always leads to an increase in the
amount of time spend on each question

Answer

For n = 2 we have the total differential:

0 ~1 —1 7 [ dx T 0
1 M () 0 dt; |+ 0 | =10
~1 0 MY (t5) dt; 0 0

where as usual the square matrix is the Hessian and has a positive determinant
since:

0 -1 -1
det [H] =det | —1 M (t7) 0 | =M (t7) — My (t3) > 0.
-1 0 MY (t5)
It follows then that:
0 -1 -1 %ﬁp ~1
-1 My (t) 0 7 | =] 0
~1 0 MY (t) 9 0
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so that using Cramer’s rule:
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(-1 1 -1
det | 0 MY(t7) 0
o Lo oomm]  wmepmen
ar dot [H] T det[H]
0 -1 1]
det | -1 0 0
o _ (- 0 M) | My,
ar det [H] T TRt H]
[0 -1 -1
det | -1 MI(t5) 0
ot -1 0 0 My (¢)
- L - >0,
or det [H] det [H]

Problem 85 Now prove the same result for the general case by showing that

M*(T) is a concave function of T.

Answer

From the constraint we have:

n
T=)t:(T)=0=1=
i=1

" ot (T)
oT

i=1

so that at least one @;(Ti) must be positive. For that ¢ we have:

M (t(T) =

N* (T)
oT

A(T) = M (£ (T))
N————

ot (T) _ OX*(T)

or orT
N
+

(3

<0.

It follows then that M* (T') is a concave function of T since from the envelope

theorem: \* (T') = % so that:

O (T) _ &*M* (T)

< 0.

oT

or?

From the first-order conditions and differentiating with respect to T" we have

now for any i:

M, (1 (T) =

AUT) = M (7 (T))

dt; (T) _ OX™ (T)

i\ oT oT
ot: (T) D) -

or M (t; (1))
AN (T)

since M/’ (t7 (T')) < 0 and

oT

< 0 from above.
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Problem 86 Suppose that the function M; (t;) is given by:
M;(t;)=mx (L—e ), §>0.

Show that m is the mazximum obtainable mark on question i , that this form
satisfies: M} (t;) > 0, M/ (t;) < 0, and that better students will have a higher
value of 6.

Answer
Since e~ — 0 as t; — oo and e~%% > 0 we have:
M; (t;) <m and M; (t;) — m as t; — oo.
Furthermore:
M (t;) = éme ™% > 0, M/ (t;) = —6*me ™%t <0
and
6M8‘—6(t‘) = t;me %% >0

so the higher ¢ is the higher the grade for a given amount of time ¢;.

Problem 87 Using the information in the previous question show that it is
optimal to spend an equal amount of time on each question (i.e. that: t}(T) =
Ly and:

(T = SxmxewT

M*T) = nxmx(1-e=7).
If T =60 and n = 3, what must 6 be in order for the student to recewe a 70%
on the exam?

Answer

From the first-order conditions:

(i)
M () =N = me ™l =\ =t = ——~

1)
so that:
n nln (2
T—th = ((Sém) T=N(T)=6xmxe nT"
i=1
In <5><m><e n ) T

n

— MY(T) = Zm x (1—e®) =nxmx(1-e 7).
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If T =60 and n = 3, then:

3xmx(1—e 50 =3xmx0.7
1—e 550 =7

e™560 = 0.3

—§ % 20 = In (0.3)

M*(60)

T [

1
0= 3 In (0.3) = 0.0602.

The following 5 problems are based on the following information:

Consider an airline having a total of @ seats to offer the travelling public.
Let Q1 be the number of seats devoted to business class travellers and let Qo
be the number of seats offered to tourist class travellers. The revenue from
business travellers is Ry (Q1) with marginal revenue: MRy (Q1) = R} (Q1) >0
and RY (Q1) < 0, and the revenue from tourist class travellers is Rs (Q2) with
MRs (Q2) = R, (Q2) > 0 and R (Q2) < 0. The airline wishes to allocate the
given @ seats, which is equal to @1 + @2, so as to maximize the total revenue
it gets:

R(Q1,Q2) = R1(Q1) + R2 (Q2) .

Problem 88 Set up the Lagrangian for this problem and find the first order
conditions. Show that the firm will choose Q7 and Q% so as to equalize the
marginal revenue from business and tourist class travellers.

Answer

To maximizing profits the airline must maximize the revenue from selling
Q seats. Consider then maximizing R (Q1,Q2) subject to the constraint @ =
@1 + Q2 which leads to the Lagrangian:

L(XNQ1,Q2,Q) =R (Q1)+ R2 (Q2) + M (Q — Q1 — Q2)

so that the first-order conditions are:

Q-Qi-Q5 = 0
RLQ) - X = 0
Ry(Q3) X = 0.

It follows then that:
MR, (Q7) = MRy (Q3) = \"

so that the firm equates the marginal revenue from the two markets.
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Problem 89 The airline’s revenue as a function of Q will be given by:
R*(Q) = R1 (Q1 (Q)) + R2 (@3 (Q)) -

Use the envelope theorem to find %QSQ) and show that marginal revenue in the
two markets will be equal to %@.

Answer
We have:
8R* (Q) — 8£ ()‘7 Q17 Q27 Q) ‘ . . .
6@ aQ Q1:Q1,Q2:Q27>\:A
A Q1=Q1,@2=3.3=2"
A
From the first-order conditions we then have:
M X - m@)-R(@).

Problem 90 Revenue in the two markets is given by:

Ry (Q1) = P1(Q1) Q1, R2(Q2) = P2 (Q2) Q2

where Py (Q1) and P2 (Q2) are the inverse demand functions satisfying P (Q1) <
0 and P§(Q2) < 0. Show that it is the market with the least elastic inverse de-
mand curve that will have the higher price.

Answer
We have:

R (Q1) = Pi(Q)+ P (Q1)Q1 =P (Q1)(1+mn (Q1))
R5(Q2) = P2(Q2)+ Py(Q2) Q2= P2 (Q2) (1+1,(Q2))
where the elasticities of the inverse demand curves are:

_ PI(Q1) P (Q2) Q2
m(Qu) = PL(Q) (@2) = Py (Q2)

Since: R} (QF) = RS (Q3) we have:
Pr(Q1) (1+n,(Q1)) = P2 (Q3) (1412 (Q3))

we have:

£ (@) _ (L+my(@3))

P (Q3)  (1+mn(Q7))
so that:
2 (Q3) > m (Q1) = P1(Q1) > P2 (Q3) -

Problem 91 Comment on the relationship between mark mazimization and this
problem.
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Answer

2.4 Cost Minimization
Problem 92 Suppose we are given a function:

y=f(x1,22,...2p)
where the it" elasticity is:

Oy Ti Of (x1,a,...2,) T
M= 8:131 Y N 81:2 f(xl,.l'g,...l'n)'

We can rewrite the function as:
y=1In (f (eil,eh, e ei”))

where § = In (y) and Z; = In(x;) . Show that:

_ 9y _ 9y
T 9% Olu()
Answer
‘We have:
9y d i
o5~ o e em)
= L of (eil,eb, e ei"> Oeti
o flemen, et ox; Ox;
_ 1 of (thxz,...xn)ei,i
TS| dz;
= 1 8f<$1,$2,...mn) o
o f(r, e, w) o, Ti =1y

Problem 93 Given the firm’s cost function: C* (Q, W, R) what are the elastic-
ities with respect to Q,W and R?
Answer

We have the elasticity with respect to @ of:

Oln(C*(Q,W,R)) 0C*(Q,W,R) Q _ Marginal Cost
dln (Q) B oQ C*(Q,W,R)  Average Cost

Note that if there are increasing returns to scale then marginal cost is less than
average cost and the elasticity will be less than 1. If there are constant returns
to scale marginal cost equals average cost so the elasticity will be 1 while if there
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are decreasing returns to scale then marginal cost is greater than average cost
and the elasticity will be greater than 1.
We have the elasticity with respect to W of:

I (C*(QW,R) _ 9C"(QW,R) W
9ln (W) - oW C*(Q,W,R)
W xL*(QW,R)
C*(Q,W, R)

= labour’s cost share.

We have the elasticity with respect to R of:

Il (C*(Q,W,R)) _ 9C"(Q W, R) R
dn(R) a OR  C*(Q,W,R)
_ RxK*(Q,W,R)
C* (Q,W, R)

= capital’s cost share.
Problem 94 Suppose the firm’s cost function is given by:
C*(Q.W,R) = QSWiR’,
What is the exponent on R (i.e., §) equal to? What do the exponents on @ and
W tell you? Calculate the conditional factor demands: L* and K* as well as
A"
Answer

Since C* (@, W, R) is homogeneous of degree 1 in W and R the exponents
on W and R must sum to 1 here or § =1 — % = 2. Since:

9C™ (Q,W,R)

Ol (C*(Q,W,R)) ~ —ag___ _ Marginal Cost _ 1
Oln(Q) B ﬂw ~ Average Cost 3

it follows that marginal cost is less than average cost so there are increasing
returns to scale. In fact the production function is homogeneous of degree 3.
Similarly:

oI (C* (QW,R)) @B yyps

DT (V) = C*(%’/W’R) = = abour’s cost s arefz

it follows that labour’s cost share is i or 25%.

Problem 95 Calculate L*, K* and \* when:

C* (Q, W, R) = Q? (W% + R%)S.
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Answer
We have:
. _ 0C*(Q,W,R) 0 _, 1 1\3
vos S (e )
1 1 2 2
= Q? (Ws +R§) W3

K= WZ%QQ(W%+R%)3
= @ (wh Rt R
A= %JV’R):%QQ(W%+R%)S
3

The following 3 problems are based on the following information:
Suppose that a cost function is given by:

1 172
C*(Q.W,R) = Q [W* + R?|

Problem 96 Show that C*(Q, W, R) is homogeneous of degree 1 with respect
to W and R.

Answer

We have:
C*(QA\W,AR) = Q ((AW)% +(\R)?

(o (ot )

Y (QW% + R%)2

= ANC(QW.R).

N—
V)

|
O

Problem 97 Find L*(Q, W, R) and K*(Q, W, R) using Shephard’s lemma and
show that they are homogeneous of degree O with respect to W and R.
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Answer
‘We have:
. _C*(Q,W,R) 0 1 i)
L(QW.R) = —— " —WQ(W2 +R2)
(W%+R%) L
_ QT:Q(lJrRzW 2)
* 60* aVV7R 6 1 1 2
kQwr) = LN _ 0o (wiy p)
(M +@®)?) -
- Q————=Q(1+Wir?).
(R)®
Problem 98 Show that
OL*(Q,W,R)
PG <0.
Answer
We have:
OL*(Q,W,R)

oW %Q (14 mEwE)

1 P
= —§QR%W—% <0.

The following 3 problems are based on the following information:

Suppose that a cost function is given by:
CH(Q.W, ) = (5L W + 82R) 7 Q°
where W and R are the prices of inputs L and K, 0 < a < 1, and § > 0.
Problem 99 Show that C*(Q, W, R) is homogeneous of degree 1 with respect
to W and R.

Answer
We have:

CHQAW,AR) = (51 (\W)™ + 65 AR)*)* Q°
= (A (EW + 5:RY)F Q°
= A(EW® +8,R) T Q°
= C'(Q.W,R).
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Problem 100 Find L*(Q,W,R) and K*(Q,W,R) using Shephard’s lemma.
Find the marginal cost function and determine the Lagrange multiplier \*(Q, W, R)
for the cost minimization problem.

Answer
‘We have:
9C*(Q, W, R)
oW
= (WO + 6,RN) QP x 5 WL
oC*(Q, W, R)
OR
= (5W + 65R) 1 QP x §,RO!
oC*(Q, W, R)
Q
1 o N
= E(élw + 8, R*) ™ QL.

L(Q,W,R) =

K*Q,W,R) =

N(QW.R) =

Problem 101 Find the average cost functions. Suppose there are decreasing
returns to scale. What can you say about 3 then? Is there increasing returns to
scale?

Answer
If there are decreasing returns to scale then 8 > 1 since:
(6, W 4 6,R%) T QP
Q
= (5, W+ 6,R*)T QO

AC(QW,R) =

so that to have average costs increasing in () we require the exponent on ) be
positive or § > 1. Similarly if there are increasing returns to scale then average
costs must fall with @ so that the exponent on () must be negative or 5 < 1.

Problem 102 Suppose that an econometrician using data for a firm finds that
the cost function is given by:

In (C* (Q, W, R)) = 3 + 0.87In (Q) + 0.631n (W) + 6 In (R) .

What does this tell you about the firm? The econometrician has forgotten to
give you the coefficient 6. Can you figure it out on your own or would you need
to ask him to find it for you?
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Answer

There are increasing returns to scale since the coefficient on In (Q) is less
than 1 or:
Oln (C* (Q,W,R)) MC

o (Q) :AC:0.87<1.

Labour’s share of costs is:

oI (C* (Q,W,R)) WL*

= =0.63
Oln (W) C*
while capital’s share of costs is:
5 QW R) _ WHR |6 37

Oln (R) C*

Problem 103 Suppose we modify the production function so that Q = F (L, K, T)
where T is the temperature, which is exogenous. Suppose that % > 0;
that is an increase in temperature always increases output. If C* (Q, W, R,T)
is the resulting clever cost function, use the envelope theorem to show that in-

creasing temperature reduces costs or that:

oC* (Q,W,R,T)

T < 0.

Answer

The Lagrangian is:
LANLK QW RT)=WL+RTI+A(Q—-F(L,K,T)).

From the first-order conditions we have:

OF (L*,K*,T)

W= oL

Since W > 0 and @%l it follows that A* > 0. Now:

oc* (Q,W,RT) 5E(A,L,K,Q,W,R7T)‘
T = T A=A*,L=L* K=K~
B _AaF(L,K,T)|
= T P=AL=LrK=K*
LOF (L*, K*,T)
= =\ a7 <0

since \* > 0 and w > 0.

The following 3 problems are based on the following information:
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Suppose we have a production function with n inputs X, Xs,...X,, with
nominal prices: Wy, Wa, ... W,, and a Cobb-Douglas production function:

Q=F(X1,Xs,...X,) = (X x X52 5 -+ x X0n)F
where
aptag+-ta,=1
and k > 0. Costs are therefore given by:
WXy +WoXo + - + W, X,,.

Let X be the nx 1 vector of the X; ’s and let W be the nx 1 vector of the W/s.
Let X be the nx 1 vector of the X/s and let W be the nx 1 vector of the W/s.

Problem 104 Show that k determines the degree of homogeneity of the pro-

duction function.

Answer

We have:
F(OAX1, M Xs,...0X,) = ((AX)™ x (AX2)* x -+ x ()\X")an,)k

=1

— )\O‘1+O‘2+"'+O"'L(Xf‘1><X§Y2><~~><XO‘")
n

= M(XM X XS XX XOm)P

Problem 105 Find the first-order conditions for cost minimization and solve
for X} (Q,W) and \* (Q,W). Show that \* (Q, W) is homogeneous of degree 1
in W while X (Q,W) is homogeneous of degree 0.

Answer

By using the In () function we can re-write the production constraint:
Q = F(X17X27 .. ‘X’n) = (“)(loé1 X XZDQ X X X;’LYn’)k

as:
1 n
ZIn(Q) - ;a In(X;) =0.

The Lagrangian is therefore:

E()\,X,Q,W) = Wle + W2X2 +-+ W?LXH

+A (% In(Q) — iai In (XZ)> .
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From the Lagrangian the first-order conditions are:

oL 1 i .
N O:>Eln(Q)—;ailn(Xi)—O
8£ )\*Ozi .
X, 0= W, — X =0fort=1,2,...n.
We therefore have:
Moy
Xr=
7 Wz

so that substituting this into the first first-order condition from the constraint
yields:

1 - )\*Oéi
Eln(Q)—;ailn(Wi> = 0

. %m (@ =)+ Y arln () = 3 asta (177)

so that solving for \* yields:

1
QW X WE2 x -+ x W
aft X ag? X - xap™

A (QW) =

Now substituting this into the expression for X} yields:

X (@, W) =

« « Qo .
W, oyt X ag® X - X ap” W;

Na; (Q%Wf‘l X WS x -+ x Wﬁ‘n) a

Problem 106 Show that the firm’s cost function is C* (Q, W) = X" (Q,W).
Why isn’t \* marginal cost here? Verify Shephard’s lemma that

aC* (Q, W)
9 W) ,
8W2 K3 (Q7 W)
Answer
‘We have:
B Moy Mg Mo,
= Wi W + W W, + + W, A

1
QW x WE2 x -+ x W
aft X ag? X - xap™
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It is an interesting fact that the Cobb-Douglas production function has a cost
function which is of the Cobb-Douglas form.
It is a simple matter then to verify that:

AC* (Q, W) N [ QFW x Wg2 x - x Won
8Wi o 8WL Oé?l X OZSQ X e X a%"
QEW X WS x - x W
N aft x af? x .-+ X apt w;
= X/ (@W).

The following 3 problems are based on the following information:

Suppose we have a production function with n inputs X, Xs,...X,, with
nominal prices: Wy, Wa, ... W, and a Constant Elasticity of Substitution (CES)
production function:

R ol

Q=F(X1,Xa,...X,) = (@1 X{ + X5 + -+ a, XF)
where
aytag+--tap=1
and k > 0. Costs are given by:
WX, +WoXo + -+ W, X,,.

Let X be the nx 1 vector of the X; ’s and let W be the nx 1 vector of the W;
’s. Let X be the nx 1 vector of the X; 's and let W be the nx 1 vector of the
W; 's.

Problem 107 Show that k determines the degree of homogeneity of the produc-
tion function and that as k — 0 the CES becomes a Cobb-Douglas production
function.

Answer

Verify that we can rewrite the production relation as:

L n
-1 XP —
Qk = E Q; L .
i=1

p P

From L’Hopital’s rule we have:

a1 g (e —1)
lim = lim +—————
G L)

pln(x)
— lim In(z)e
p—0 1
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so that as p — 0 we have:

%m @ = Yai(x)

= Q=X xX5?x--- x Xom)k
Problem 108 Find the first-order conditions for cost minimization and solve

for Xx(Q,W) and \* (Q,W).

Answer

We can re-write the production constraint as:
n

QF =3 ;X! =0.
i=1

The Lagrangian is therefore:

L ()‘7X7 Qa W) = Wle + W2X2 +---+ W?LXH
+A (Q% - Zaixf> :
i=1

The first-order conditions are:

or L, & Y
oL ] o
X, 0= W; = XNaipp(X;)" =0fori=12,...n

We therefore have:
Wi = Naip (X7)"™
so that taking both sides the power —£7 and solving for (X)) yields:

L __p_ 0 _
(X)) = W7 a7 ()T
1 _pP
= (X)) =) T, W
n noo_ 1 o
— QF =Y (X)) =(\) T AT W
=1 i=1
L P
I QrprT
= (A =1 =
( ) Zﬂla'_plTIW;i_l
1= K2 K2
and so:
R <, P
(XY = o, TIWT R ()T
,;%W_Ll
» o P
= Qk 2 7;1 ?5_1

n —1
Doie1 @ W,
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so that:

|
<

X7 (Q, W)

Problem 109 Find the firm’s cost function C* (Q, W) . Verify Shephard’s lemma
that

oc* (Q W) .,
oW, X5 (QW).
Answer
‘We have:

|
O
— ==
I
(]
2
1
1
N——
—

It is an interesting fact that the CES production function has a cost function
which is of the CES form.

The following 3 problems are based on the following information:

Suppose that a firm has a Leontief production function given by:
Q=F(L,K)=Amin[¢c®“L%, K]

where min [X,Y] is the minimum of X or Y (for example min [5,4] = 4 while
min 2,7 =2 ) and @ > 0,4 >0 and o > 0.
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Problem 110 Prove that the firm always hires labour and capital so that:

K
oL =K% & fza.

Show that the technology is homogeneous of degree a.

Answer
Suppose that K > oL. Then K% > ¢“L* and so the firm would produce:
Q= Amin [¢c*L* K% = Ac“L*.

Now suppose the firm reduced the amount of capital it hires to Ky = oL < K.
Then K§ = 0c“L® and so:

Q = Amin [c“LY, K§] = Ao“L*

and so the firm produces the same amount of output but hires less capital.
This cannot be profit maximizing or cost minimizing and so we conclude that:
K <olL.

Now suppose that K < oL. Then K% < ¢®*L® and so the firm would pro-
duce:

Q@ = Amin [c“L*, K% = AK“.

Now suppose the firm reduced the amount of labour it hires to Ly = %K < L.
Then c*L§ = K“ and so:

Q@ =Amin[c“L§, K*] = AK“

and so the firm produces the same amount of output but hires less labour.
This cannot be profit maximizing or cost minimizing and so we conclude that:
K >olL.

Combining the two results: K > oL and K < oL we conclude that: K = oL.

Problem 111 Show without calculus that the firm’s cost function is given by:
C* (Q.W.R) = (W +6R) A~Q*

and verify that Shephard’s lemma holds for this cost function.

Answer

Since K = oL the firm always hires labour and capital in the same propor-
tion. Because of this we solve for the cost minimizing L* and K*, which are
independent of W and R, as:

Q = Ao°L® = I'(Q) = A FQF
Q

AK® = K*(Q) = A™= Q%
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so that:
C*(QW,R) = WL*(Q)+ RK"(Q)
= Wx%A—%Q%+R><A—%Q%
= (KH%)A%Q%.
(o}

You can then verify that:

IC (@QW.R) _ 1, 1.1
e Y Sl oL Ep A (e)
9C* (Q,W,R)

ST - ATRQE =K (Q)
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Integration and Random
Variables

3.1 Summation

Problem 112 Suppose that n = 25 and
Y Xi = 100, Y X7 =500
i=1 i=1
v
i=1

Based on this information calculate

n n
125, ZYf = 850, ZX,;Y,; = 700.
=1 i=1

i (3X; 4 4Y; + 3), i (3X; +4)°, i (3X; + 4Y;)?

i i=1 i=1

3 |l
—

(X, - %), 3 (K= X) (v - 7).

=1 i=1

Now calculate B forY;=a+ 8X; +e;.

90
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Answer

‘We have:
n

> (83X, +4Y; +3)
i=1

Thus:

3i:X¢+4i:Yi +3n
i=1 i=1

3x100+4 x 125+ 3 x 25 =875

n

> (9X7 + 24X, + 16)
i=1

9iXi2+24iXi+16n

i=1 i=1
9 x 500 + 24 x 100 416 x 25 = 7300

D (9X7 + 24X,Y; + 16Y7)
i=1

9&){3 + 24i:XiYi + 16%)@2
=1 =1 i=1

9 x 500 + 24 x 700 4 16 x 850 = 34900

n
D> (X7 —2XX; + X7)
i=1

n
Z X? —nX?
i=1

100 2
500 — 25 <§> =100
n
me —nXY
=1

100 125
700 — 25 <¥> (%) = 200.

Y (X - X) (Vi -Y) 200

B =

S (X - X)* 100

91

Problem 113 If .7_, X; = 35 then what is X and what is _, (4X; + 2)?

If 27 X2 = 255 then what is 3., (4X; +2)* and what is 3", (Xi — X)Q?



CHAPTER 3. INTEGRATION AND RANDOM VARIABLES 92

Answer

‘We have:

. 1 1
X = =Y X;=-x35=
n; 7><
7 7 7
(4X;+2) = 4) Xi+> 2=4x35+Tx2=154,
=1 =1 =1

K2
If 327, X2 = 255 then:

7 7
DX +2)° = > (16X7+ 16X, +4)

=1 =1

7 7 7
= 16) X7+16) X;+ > 4
i=1 i=1 i=1
= 16X 255+ 16 x 35+ 7 x 4 = 4668.

Also:

7
1=

7
(xi-X)" = Y x;-7x
1 i=1
= 255 —7x25=80.
Problem 114 If 2321 X; = 50 then what is X and what is Zgl (3X; +2)?
If 30,0, X2 = 275 then what are 3,0, (3X; +2)% and 3,2, (X, — X’)Q?

Answer

‘We have:

X lZXi:ixw:

10 10 10
> (3Xi+2) 3 X+ 2=3x50+10 x 2 =170.

i=1 i=1 i=1

If 310 X2 = 275 then:
10 10
D BX+2)° = > (9X7 +12X; +4)
i=1 i=1

10 10 10
= 9) X7+12) Xi+ ) 4
=1 =1 =1

= 9x275+4+12 x50+ 10 x 4 = 3115.
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Also:

(]
=
\
\5\
I

10
ZXi — 10X?
=1

= 275—10 x 5% = 25.

3.2 Integration

Problem 115 What is the anti-derivative of e=* ¢ Show that:

/ e dr=1—¢"T.
0

The anti-derivative of e=% is —e~% so that:

o
—x _ —x|T =T
/e dr=—e ;g =1—¢e"".
0

Answer

Problem 116 If G,, = fOT x"e”"dx use integration by parts to derive a rela-
tionship between G, and Gn—_1 for n > 0. What then is G?
Answer

Using integration by parts with:

—X

u=z" v =e
v —T

w =na"l v=—e

o0
G, = / z"e "dx
0

oo
= —x"e_”g:o—i—n/ 2"t dr
0

we have for n > 0:

= T T +nG,_;.
Thus

Gy, = -T?T+234
—T? T 42 (—Te_T + Go) .

since:

Gi=-T'eT4+1Gy=-Te T +Gy.
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But by the previous problem
Go = / e dr=1—eT
0

so that:

Gy, = -T?T+2 (—Te_T + (1 — e_T))
= —e T (T +2T+1) +2.
Problem 117 IfT (n,«a) = fooo " te=%dx for a > 0 use integration by parts

to derive a relationship between I' (n,a) and I' (n — 1, ) for n > 0. Show that
for n a positive integer that:

I'(n,a)= L (n—1)L

a?L

Answer
Using integration by parts with:

w=zx"1 v =
W =nz""? v=—

Q=
|
Q
8

we have for n > 0:

I'n,a) = / 2" lem* dy
0

1 -1 [
,_znflefozm‘;ozo + n / xn72efazd$
(% « 0
n— 1F( 1,a)
= n— ).
a )

For n =1 we have I' (n,a) = == (n — 1)! since:

o0 |
SRR LS
0 (0% (0%

and if the statement is true for n — 1 so that: I'(n — 1,a) = %T_,Zlﬂ then:

n—1

T (n, ) F'(n—1,a)

n—1n-2) (n-1)!

o an—l am

and so the result follows by induction.
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Problem 118 Calculate the following integrals:

5
i) / z2de,
1
3
i1) / e *dx,
0
3 2
zzz)/ (e™ +2)" du,
0
3
zv)/ xe *dx,
0
3
v) / r?e dx.
0

Answer

We have:

1 4 33 _3
= 73 + 5 de
3
/:Uefmda: = —de 241
0
3
/xze_”dm = —17e 3 +2.
0

Problem 119 Calculate

T
/ te "t dt
0

using integration by parts. From this find:

o0
/ te="tdt
0

assuming that r > 0.

95
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Answer

Using integration by parts with:

we have:

e 1
te At = — Xty + =
T T

O\’ﬂ
|
5
oy
@
2
U
S

r
0
efTr 1 efrt T
= = T—- t=0
T rr

_ _6 1 _ —rT
= " T+r (1 e )

Since r > 0 it follows that e — 0 and e~ "TT — 0 so that:

[e e}

1
—rt _

0

Problem 120 Using integration by parts, calculate:
T
/thfrtdt, where r > 0
0

and find the limit of this expression as T — oo when r > 0.

Answer
Letting u = ¢ and v/ = e~ we have:
u=t> o =e
—rt

e
r

w =2t v=—

so that using integration by parts we have:

T - 5 T

/tze_”dt = £ t2|tT:0+—/te_”dt
T

0

r

0
—Tr 2 h
- & 72y —/te_"'tdt.
r r
0

96
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The new integral was found in the last problem so that:

T
/te*’"tdt
0

—Ir 2 /1 T
- L 2y <—2 (1- ef’“T) — —eTT.> .
r r\r r

SN

z —Tr

/th’”dt - & 2y
T

0

Letting T" — oo we have:

o

2
2 —rt _
/t@rdt—r—s

0

Problem 121 Using integration by parts find:

5
/ ze 2 dz.
0

The incomplete gamma function is gwen by: T'(n,m) = fT(:LO 2" te~%dx for
m > 0. Use integration by parts to find the relationship between T' (n,m) and
I'(n—1,m).

Answer

Using integration by parts with:

u=x vV =e
=1 v= —672%
we have:
T
5 —2z
_o, ze 1 iy
/0 ve ¥dy = — 5 \2:0—&-5/6 2t
0
5 _ 1 e 2
- Taf 10+§( 2 io)
1
= 26710 + 1 (1 eilo)
111,
-1
Now given:
u=za""! vV =e"
wW=Mm-1)a"? v=—e"
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we have:
I'(n,m) = / 2" te "dx
= —a" e+ (n— 1)/ "2 dy

= m" e+ (n—-1)T(n—1,m).

Problem 122 [f L* (Q, W, R) is the conditional factor demand for labour, what
is: ‘XZ" L* (Q,W,R) dW equal to?

Answer

By Shephard’s lemma we have:

L 9C* (QW,R)

L (QW.R) = ———2%

so that the anti-derivative of L* (Q, W, R) (with respect to W) is —C* (Q, W, R) .
Thus:

Wa W .
[ @umar = [ C@ED,,
" Wi ow

= —C*(Q,W.R) [}y,
= C*(Q,W1,R) — C* (Q,Ws,R).

Problem 123 Consider the standard normal density:
p(x) = 67I2/2/\/27T, —oo <z <00

It is a fact that: [~ p(z)dz =1 and that if the random variable X has this
density then E[X] = 0. Show that Var [X] =1 (hint: use integration by parts
with uw = z,v" = xp (z) and show that v = —p (z). Now show that E [X*] =3
again using integration by parts (hint use u = x> and the same v' as before).
The value 3 is the kurtosis of the standard normal distribution, a fact commonly

used in applied work to test if data are consistent with the hypothesis of a normal
distribution.

Answer

Using integration by parts with:
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we have:

since:

Tr—Fo00
using L’Hopital’s rule since:
. =2 . x . 1
lim ze”2 = lim — = lim — =0
r—+o0 r—+o0 e r—+o0 res

and

o) Bié o)
dr = z)dr = 1.
/_OO o _Oop( )

Now using integration by parts with:

_ .3 /I _ .e
U=z v —m@
r_ 2 __6717
u =3x° v= o
we have:
E[XY] = / zp (z) dx
12

since Var [X] =1 and:

99
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(using L’Hopital’s rule since:

3 2
. _z2 . x . 3x
lim 2%~ = lim — = lim
T—Fo00 r—+o0 e r—to0 re T
6z ) 6
= lim — = lim = =0)

r—+oco (.’L‘2 + 1) e r—=+o00 (.’L‘S + 3.’13) 617

Problem 124 The n'* uncentred moment is defined as: u,, = E[X"]. For the
standard normal distribution use proof by induction to show that: p, =0 forn
odd and that for n even

y=Mm—-1)x(n—-3)x---x3x1
Calculate p,, forn=20,1,2,3,4,5,6.

Answer

Using integration by parts with:

we have for n > 0:

[
= X XL
/j“n e \/ﬁ

2

_zZ o) _
= Sl 1) / 2

V2 o V2w

= (TL - 1) Hn—2

since:

. — —_x
lim 2" te™ T =0.
r—+o0

We now use a proof by induction to show that p,, = 0 for n odd. We know
that py = E[X] = 0. Now assume that u, = 0 for ¥ < n and k odd. In
particular if n is odd then so too is n — 2 and so p,,_, is also odd so that by the
induction hypothesis p,,_, = 0 and so:

Hyp = (n - 1) Hp—2 = 0

so that: p,, = 0 for all n odd.
For n even we have:

po = E[X°] =1.
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Since if n is even so too is n — 2 we have from the induction hypothesis that:
fpo=(M—3)x - x3x1

so that:

We thus have:

3.3 Random Variables

The following 3 problems are based on the following information:

Consider an investor who can invest in three assets with returns Ry, R; and
R where:

E [Ro] = 3, Var [Rﬂ =0
E [Rl] = 10, Var [Rl] =25
E [Rg] = 7, Var [Rg} = 9, Cov [Rl, RQ} =-0.

Problem 125 What kind of asset does Ry correspond to? Calculate E [Rﬂ ,
E [R1Rs] and the correlation coefficient: p between Ry and Rs.

Answer

Ry has a variance of 0 and hence is a degenerate random variable; that is
Ry = 3 with probability 1. It is therefore a riskless asset (something like Canada
savings bonds).

‘We have:
E[RY] = E[R)>+Var|[Ry]=10%+25=125
E[R\Ry] = E[Ri]|E[Ry]+ Cov[Ry, Ry =7 x 10+ —9 =61

N Cov [Rl,Rg] N -9 o _§
P VVar [Ri)\/Var[R,] V9V16 4
Problem 126 The return on the portfolio is: R = Row, + w1 Ry +wa Ry where:

1=wo+wi+ws Ifw,=0.3w; =05 andws = 0.2 calculate E[R], Var[R],
and E [R?] . If wg = 0 find the portfolio with the least risk.
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Answer

‘We have:

E[R] = 0.3E[Ry]+0.5E[R1]+ 0.2E [Ry]
= 03x3+05x10+02x7="7.3
and using the fact that Ry = 3 is a constant and therefore does not affect the
variance we have:
Var[R] = Var[0.3 x Ry+ 0.3R; + 0.5Rs]
= Var[0.3R; + 0.5R,]
= (0.3)*Var[Ry] + (0.5)* Var [Ry] + 2 x 0.5 x 0.3 x Cov [Ry, Ro]
= (0.3)*%x25+(0.5)>x9+2x%0.5%0.3x =9
= 1.8.

If wg = 0 then since the asset weights sum to 1 we have:
l=w,+wi+wy=wy=1—wq
and so replacing wo with 1 —wj in
Var|[R] = Var|w,Ry+ wiRi + waRs]

= Var|wiRi + waRy|
= Var [wlRl + (1 — wl) RQ]
= wiVar [R1] + (1 — w1)2 Var [Ra] 4+ 2w1 (1 — w1) Cov [R1, Ra)
= (@1)’25+ (1 —w1)?9+2xw;y x (1 —wi) x (=9)

we have:

flw)) = Var[Rl=(w1)’25+ (1 -w1)®9+2xwi x (1 —wi) x (-9)

= f(w1) =50w; — 18 (1 —wy) — 18 (1 — 2wy)

= f(w])=0=50w; —18(1 —w]) — 18 (1 — 2w7)
9 17
= w] = w2:1—2—6:2—6.
This is a global minimum since:

" (w1) =50+ 18 + 36 = 104 > 0

so that f (wq) is globally convex.

Problem 127 If the investor wants an expected return of return of 8, what
portfolio does this with the minimum amount of risk? What is the variance of
this portfolio.
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Answer

Since the portfolio needs to have an expected return of 8 and the weights
of the portfolio sum to 1 we have:

E[R] = 8=wo3+wi1l0+ w7
1 = w,+wi +ws
or
8=(1—w; —w2)3 4+ w110+ wa7
or:

5=wi7 + wyd
which will act as the constraint. The variance of the portfolio is:
Var [R] = 25w3 4 9w3 — 18w ws.
We will minimize LL;@ subject to the above constraint so that the Lagrangian
is:

25w? + 9w3 — 18wiws

L()\,Wl,Wz) = 9

+)\(5—w17—w24)

and the first-order conditions are

QLA Wiwh) g _gn =

o\
OL (\*, wi, w3) x " .
# = 25w} — 9wl —TA =0
aL (A*?w*?w*) * * *
# = 79w1 + 90)2 — 4\ =0.

with second-order conditions being satisfied since:

0 -7 —4
H=det| -7 25 -9 | =-1345<0.
-4 -9 9
The first-order conditions in matrix notation are then:
0 -7 —4 A" -5
-7 25 -9 wi | = 0
-4 -9 9 w3 0

so that solving (by Cramer’s rule or matrix inversion) we have:

A 0 -7 —477'T =5 %
wi | =| -7 25 -9 0| =1 %
W} 4 -9 9 0 Iod
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Thus the optimal portfolio has:

99 163
s 2037, W= o =
Y1~ 969 1927 569

or 37% in Ry, and 61% in Ry and

0.61

7
f 1wl —wh = —— = 0.02

Yo 269

or 2% in Rgy. This is a global minimum since the objective function is convex
(prove this!) and the constraint is linear.
The variance of the portfolio is then given by:

Var[R] = 25w? + 9w3 — 18wiwy
2 2
99 163 99 163
= o522 20 g 22 222
g (269) 9 <269> 8% 269 269
—  2.6766.

Problem 128 Let Ry, Ry and R3 be three random variables having the follow-
ing properties:

E[R] = T,E[Ry]=10,E[Rs] =3
Var[Ry] = 9,Var[Rs] =16,Cov[Ry, Re] = —6,Var[Rs] = 0.

What is E [R%], E [R1Rs] and the correlation coefficient between Ry and Ro?
What kind of random variable is R3? If

R=03R; +0.5Ry + 0.2R3,

what is E [R] and Var [R]?

Answer
‘We have:
E[RY] = B[R +Var[R)=17+9=58
E[Rle] = E[RI}E[RQ] +COU [Rl,RQ] =7 10+_6:64

Cov [Rl, Rg} —6 1

P= VVar [Ri]y/Var [Ri] VN

Since Var [R3] = 0 it follows that Rj is a degenerate random variable or R3 = 3.
For R

E[R] = 03E[Ri]+0.5E[Ry] + 0.2E R3]
= 03x7+05x10+02x3="7.7.
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Since R3 = 3 is a constant we have:
Var[R] = Var[0.3R;+ 0.5Ry +0.2 x 3]
= Var[0.3R; + 0.5Ry]
= (0.3)°Var[Ry] + (0.5)> Var [Ra] + 2 x 0.5 x 0.3Cov [R1, Ra]
= (0.3)>x 9+ (0.5)> x 164+ 2 x 0.5 X 0.3 x —6
= 3.0L

Problem 129 For any two random variables: X and Y, what value of a would
minimize Var [Y —aX] ?

Answer
We have:
fla) = Varly —aX]

= Var[Y]+a*Var[X] - 2aCov [X,Y]

so that:
ff@) = 0=2a"Var[X]-2Cow[X,Y]=0
I Cov [X,Y]
- Var[X]

This is a global minimum since:
" (a) =2Var[X] >0
so that f (a) is globally convex.

Problem 130 Consider a barrel with 30,000 dice in it, let X; be the outcome
of the it" die and let S be the sum of all the dice. Fach of the dice is fair so
that the probabilities of 1,2,3,4,5 and 6 are all &. Calculate E [X;], E [X?],
Var[X;], E[S] and Var[S]. It is a fact that 95% of the die rolls will fall in a
range

E[S] +1.96\/Var[S].

Calculate this range and compare this with the range of all possible values.

Answer
We have:
1 1 1 1 1 1 7
FlIX;] = =%x14+4=%x24+=-%x3+=-%x4+=XxXx5+=X%x6=—.
[X;) 6>< +6>< +6>< +6>< +6>< +6>< 5
1 1 1 1 1 1 91
E[X? = -x124=-x22+4+=>x324+=-x424+-x54+-x6>2=—
[X7] G XU e X2 e X3 e x AT e X BT 4 e X 67 =

Var[X;] = E[X}]-E[X,]’= % - <g) - %
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IfS =X+ Xo+ -+ Xogooo then:

E[S] = E[X1+X2+-~-+Xsoooo]
= E[Xi]+ E[X2]+ -+ E[X30000]
7 7 7 7
- — 4+ — = -—=1
2 2 2 = 30000 x 5 05000
and
Var[S] = Var[X:+ Xo+ -+ X30000]
= 1*Var[Xi]+ 1*Var [Xa] + - + 1?Var [X30000)
35 35 35 35
= S+ Tg ot T = 30000 x T = 87500.

We therefore have 95% of the outcomes of S falling in the range:
E[S] £ 1.964/Var [S] = 105000 £ 1.964/87500 = 105000 =+ 580.

The lowest possible value of S occurs when each die is a 1 which results in
S = 30000, while the highest possible value of S occurs when each die is a 6
which results in S = 180000. Thus the total range of S is 180000 — 30000 =
150 000. Despite this very large range, almost all values of S will in a very narrow
band around 90000; for example 95% of the outcomes will occur in the range
105000 £ 580. This is an illustration of the law of large numbers.

Problem 131 Consider a barrel with 20,000 dice in it, let X; be the outcome
of the it" die and let S be the sum of all the dice. Each of the dice is crooked so
that the probabilities of 1,2,3,4,5 and 6 are respectively: 15,75 75> 10> 70 a"d
1. Calculate E [X;], E [X?], Var[X;], E[S] and Var[S]. It is a fact that 95%

of the die rolls will fall in a range
E[S] £1.96y/Var[S].

Calculate this range and compare this with the range of all possible values.

Answer
We have:
1 1 1 1 1 1 9
E[X;]] = —x14—x2+— x4t — e
[X;] IOX +10>< +1O><3+10>< +10><5+2><6 5
1 1 1 1 1 47
EXQ _ 12 il 22 2 - 42 il 2
[X7] XU g XL xF g =5
47 [9\? 13
- 2] _ 2 [(Z) = =2
Var [ X;] E[XZ] E[X;] 5 <2) T
IfS=X; 4+ Xo+ -+ Xopo0o then:
E[S] = EXi+Xo+---+ Xzoooo]
= E[Xi]+ E[Xa] + -+ E[Xa0000]
9 9 9 9
= §+§+-~ §—QOOOOX§ 90000
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and
Var[S] = Var[X;+ Xo+ -+ Xa0000]
= 1*Var [X1] + 1*Var [Xa] + - - - + 1*Var [X20000]
13 13 13 13
= 4 e — = 20000 x — = 65000.

We therefore have 95% of the outcomes of S falling in the range:
E[S] £1.964/Var[S] = 90000 £ 1.964/65000 = 90000 = 500.

The lowest possible value of S occurs when each die is a 1 which results in
S = 20000, while the highest possible value of S occurs when each die is a 6
which results in S = 120000. Thus the total range of S is 120000 — 20000 =
100000. Despite this very large range, almost all values of S will in a very narrow
band around 90000; for example 95% of the outcomes will occur in the range
90000 = 500. This is an illustration of the law of large numbers.

Problem 132 If Z ~ N [0,1] it is a fact that E [Z?] =1 and E [Z*] = 3. Note
that if Y = Z2 then' Y ~ x3 and so we have: E[Y] =1 and E [Y?] =3 or
Var[Y]=E[Y?]| -E[Y =3-1=2.

Consider generalizing this to the case where if Y ~ x2% then E[Y] = r and
Var[Y] = 2r. (see the lecture notes for the relationship between the standard
normal and chi-squared distributions).

Answer
If
Y=2Z}+22+.. + 72
where: Z; ~ N[0, 1] are independent then Y ~ 2. We therefore have:
ElY] = E[Z}+Z3+ -+ 2Z}]
— E[Z)+E[Z) -+ E[2]
= 141+ +1=r
Now
Var (28] = E|(23)]-E (2]’
— B[z - B2’
= 3-1=2
so that since the Z!s are independent:
Var[Y] = Var[Z{+Z5+-- + Z7]
= 1*Var [le] +1*Var [222] + -+ 1*Var [Zf]
2424 4+2=2r
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Problem 133 Let X and W be two random variables having the following prop-
erties:

EX] = 5, Var[X]=9,
E[W] = 10, Var[W] = 16,
Cow X, W] = -4

What is E [X?], E[XW], Cov[W,W], Cov[W,5] and the correlation coeffi-
cient: p between X and W? If

Y =20+ 2X — 5W,
what is EY] and Var [Y]? What is Cov[Y, X|?

Answer
We have:
E[X?] = BX]+Var|[X]=5"+9=34
E[XW] = E[X]E[W]+Cov[X,W]=5x10+—4=46
Cov[W,W] = Var[W]=16
Cov[W,5] = 0
_ Cov [X, W] 4 1
P VVar [X]\/Var [W] IRVCNTRE
For Y
EY] = 204+2E[X]|-5E[W]
= 204+2x5-5x10=-20
Var[Y] = 2°Var[X]+ (=5)*Var[W]+2 x (2) x (=5) Cov [X, W]

= 22X 94 (=5)* x 1642 x (2) x (=5) x (=4) = 516.
For Cov[Y, X] we have:
ColY,X] = E[Y - E[Y])x (X - E[X])]
— [20+2X 5W — E[20 + 2X — 5W]) x (X — E[X])]
= ERX-EX]))-5(W-E[W])x (X - E[X])]
= 2B[(X - E[X]) x (X = E[X])]+5E[(W - E[W]) x (X — E[X])]
— 2E|[(X —E[X])?| —5E[(W — E[W]) x (X — E[X])]
= 2Var[X]—5Cov W, X]
2x9—5x (—4) =38

Problem 134 If X is a random variable with outcomes 1,2,3 and with respec-
tive probabilities 1. 3,1 then calculate E[X], E X)?,E [X?], Var [X], E [e¥]
and eP1X],
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Answer
‘We have:
EX] = 1><1+2><—+3><1f2
- 4 2 4
E[X]? = 22=4
1 1
21 _ 2 =+ 2 222
E[X?] =1 ><4+2 ><2+3 x1=5
9 1
Var[X] = E[X?|-E[XPP=2-22=—
E[eX] = el x 462 x =+ 6% x = = 9.3955
4 2 4
ePIXT = 2 =7.3081.

3.4 Econometrics

Problem 135 Prove that

n

S(m)=3" (¥ —m)*

i=1

is minimized when m = m = X both with calculus and without calculus.

Answer

Using the sum rule for derivatives we have:

ds (m) B " d 9
dm o ;dm(YZ m)

I
™
&
=

|
2

so that the first-order conditions are:

ds (1) -
dm
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with:

ESm) & d |
—mz = ;%(—Q(YZ—W))

= i2:2n>0
i=1

so that S (m) is globally convex so that Y is a global minimum.
Without using calculus we have (completing the square):

Som) = Y- =3 (5 7) + (m =)
_ i(YiY)QJr2é(YiY)(mY)+é(mY)2
_ (Yi—Y)z—l—Q(m—}_/)zn:(Yi—}_’)+n(m—}7)2

=0

<
3

= (Yi=Y) +n(m-Y)".

i

Il
—

Note that the term Y7, (¥; — 57)2 does not depend on m while for the second
t7er1[11n(1nf}7)2 > Oform;«éYandn(mff/)2 =0 for m =Y so that m =
Y is a global minimum of S (m).

Problem 136 Consider the simple linear regression model without a constant:

Yi;=p08X;4+e;,i=1,2,...n.

The least squares estimator B minimizes:

n

S(B) =Y (Y- 8X:).

i=1
Show from the first-order conditions that
B _ 21;1 XY
i X7
and that the second-order conditions for a minimum will be satisfied. Show that

B is the least squares estimator without using calculus. Show that if é; = Y;—X; /3
is the least squares residual then:
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Answer

Using the sum rule for derivatives we have:

dSB) _ N~y v

n

= > 2Xi(Yi - Xf)

i=1
so that the first-order conditions are:

ds (3
d<ﬁ) = 0=

[M]=

2%, (vi - xiB)

-
Il

<

1

— Y X (n —Xzﬁ) )
=1

— ixm— (i})@)ﬁzo

Z?:l XY

= =5 x

with:

S (8)

n d
= -2) —X;(¥Yi-X0)
3’ ; dj

2zn:X3>o
i=1

so that S (3) is globally convex so that (3 is a global minimum.
Without using calculus we have (completing the square):

S(B) = Z<Y - Xip)? = Z ((Yi —Xﬁ) + X (3—5))2

i=1 i=1

n

i=1
n

i=1

=0
n

- > (% —Xi3)2+ (Bﬁ)zzan?-

i=1

111

= S (v-xh) w2y (V- x8) X (3-8) + o (- )’
= Z(mxiﬁ)zw(ﬁﬁ)i& (vi-xiB) + (Bﬁ)zzanf



CHAPTER 3. INTEGRATION AND RANDOM VARIABLES 112

where the middle term is zero since:

3ox, (vi - x:8) Soxy, - (Z X?) b
=1 =1 =1

n n n
= Sxy - (Soxz | 2 XY
_ zn:XiYi —i:XiYi —-0.
i=1 i=1
Now from
n N2 R 9 1
SB) =3 (Yi-X:B) +(B-8) 3 X7
i=1 i=1

N2

the term >, (Yi — Xzﬂ) does not depend on [ while the second term is
positive for g # /3 and 0 for 8 = /3 It follows that B is a global minimum of
5(8)-

Problem 137 For the simple linear regression model: Y; = a + BX; + e;,
i =1,2,...n the least squares estimators & and (3 are the values of a and (B
which minimize the sum of squares function:

n

S(o,8) =Y (Yi—a—BX;)".

i=1
Show that:
Y - BX
HZ;L:I XiYi — (21;1 X;) (ZZL:l Yi)
n Y XP - (T X))
Yin (X - X) (YY)
Z?:l (Xi - X>2 .

Show that S (a, B) is globally convex as long as the X; 's are not all identical.

jo)s
I

»
\

Answer

We have using the sum and chain rules that:

95 (a,8) S o
“a | —2;:1(3’1 a— [X;)
98 (o, ) .

8‘; - 72;:1)(@-(1@7@75)(@-)
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so that the first-order conditions for a minimum are:

% - zé(maﬁxi)():»n&+<é&>ﬁgﬁ
—85(;;6) _ _zijxi(yi—d—ﬁxi)ﬂ:<ini>d+<i:X?>3=iXin
i=1 i=1 i=1 i=1

From the first first-order condition we have:
n n
n&Jr(ZXi)B = Y Y,=a+XB=Y
i=1 i=1
— a=Y - X3
Writing both first-order conditions in matrix notation we have:

[ n Z?_lXiH@}_[ ZZ‘_lYi}
S Xe Y X2 B8] | XL XY |

Solving for 3 using Cramer’s rule we find that:
ny i XiVi— (0L, Xi) 2, Y9)

/3 - n n 2
ny iy Xi2 = (2im1 X)

Verify that:

n n

R 07) = 3 () (3or)
né){f(é)@)z

=1

s
\'M
=
|
>
I

and so:

ot K- X) (V) B (G- X) (N —Y)
nY (X - X) S (X - x)°
The Hessian of S («, ) is given by:
H— { 2” 22?:1 Xi ] )
23T X 230, X7
Using leading principal minors we have:

My = 2n>0

n n 2
M, = det[H]=4 nZXZ?—(ZXi)
=1

i=1

= 4nZ(X27X)2 >0

i=1



CHAPTER 3. INTEGRATION AND RANDOM VARIABLES 114

as long as not all X/s are identical since in that case there will be at least one
X; # X and so (Xi — )_()2 > 0. Thus &, B is a unique global minimum.

Prob}em 138 Let f/; =& +BX1‘ be the fitted value and let é; =Y; — & — BXZ» =
Y; = Y, be the least squares residual. Show that:

e = 0,V =a+pX
i=1
n n R
iné, = 0, Yiéi=0

Use this to show that:

n n n

vy = Y (n-v) ey

1 i=1 i=1

7

and from this that 0 < R? < 1 where:

n % =\ 2
R2 _ Zi:l (}/Z B Y)
S (Y -Y)?

Answer

From the first-order conditions we have:

é;

% - 2§(ndﬁX1)0:>§;éio
= "é“r(i:Xi)B: 3 Y; = YV = a+ BX,
=1 i=1
N . & )
% = 2;Xi(yi&/3Xi)0:>i_lXiéi0-
Therefore:
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Now
Y, = YZJréi:>Y27Y:Azf}7+éi
_ ~ _\2 ~ _
- (Yi— 2:( i — ) +éi2+2(Yi—Y)éZ
= (Y, -¥) = (AZfY)2+Zé§+ZZ(YﬁY)éZ
i=1 i=1 i=1 i=1
But:
n R n R n
E:Q}Jﬁzz Viei—vS ¢ =0
i=1 =1 i=1
so that:

Therefore dividing both sides by: Y7 | (¥; — )7)2 we have:

% =\ 2 n -
S (B-v) v L yre

— i=1%

— +ﬁ
Y (Yi-Y) Y (Yi-Y)

1:

A —\2 _
so that since: >, (Yi - Y) >0and 37, (Vi = ¥)? > 0 we have:

N2
R2:m>0
Xin (Yi-Y)

and since Y i, €2 > 0 we have:

n Az
Rl 2=l oy

S (i)' T

115

Problem 139 Now consider the weighted sum of squares function given by:

w (e, 8) =Y w; (Vi — a— BX;)*
i=1

where the weights w; satisfy: >, w; = n. Show that if 3 minimizes Sw (., 3),

then:

ny o wilXyVi = 0 wiXa) Q0L wiYs)

B = n n 2
ny iy win‘z = (Dimy wiXi)
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Answer
We have using the sum and chain rules that:

95(af) _ _ziwi (Y —a — 8X;)

ox —
08 (o, B) ~
5 = —Z;wZXZ(YZ a— BX;)

so that the first-order conditions for a minimum are:

8S(A 5) n T n n
8;.0? = zzwz(y;ééBXz)0:><sz>d+<zw2Xz>BszE

oS (d, B) n n n n
— X (Vi—ha—AX.) = X | A x2 )=
— = —2ZwZX, (Y & BXZ) —0— <Z;wx> &+ (Z}uc) 3= > wiX:Y;
or in matrix notation:
n SiqwiXy | [a] [ YL wY;
S wiXs Yo w; X7 B Y wiXiY |

Solving for (3 using Cramer’s rule we find that:

n sy wilXiVi — oy wiXi) iy wiYs)

B =

The following 3 problems are based on the following information:

Let p; ¢ = 1,2, 3...m be the probability that an individual randomly chosen
from the general population has an income in category i (say $20,000/year to
$25,000/year) and where there are m income categories. Alternatively p; is the
proportion of the population in income class i. These probabilities describe the
income distribution of society. You as an econometrician do not know these
probabilities: p1,p2,...pn. However, you have surveyed n people taken ran-
domly from the population. Let n; be the number of people in your sample
in income category ¢. Clearly ny + ne + -+ 4+ n,, = n. You would like to use
these numbers to estimate the p; 's and you decide to do this by choosing p;
1 =1,2,...m to maximize the log likelihood given by:

m

l(p17p27 .. -pm) = an In (pz) .
=1

Of course you realize that probabilities sum to 1 so that the following constraint
holds:

pr+p2+-+pm = 1.
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Problem 140 What is the Lagrangian for this constrained mazximization prob-
lem? From the first order conditions show that the maximum likelihood estimates
are given by: p; = <+. Why is this sensible?

Answer
‘We have:
L P12, -pm) = Y _niln (pi) + A (1 - ZZ%)

=1 i=1

so that the first-order conditions are:

m m

1= "p = 0=1=>p
i=1 i=1
n; 1 ) W
— =X = 0fori=1,2,...n = n; = \p;-
b

It follows then that:

m m m
ni:)\ﬁi:>nzzni: )\ﬁiz)\ZﬁiZ)\
i=1 i=1 i=1

so that: A\ =n and: p; = %L =,

Problem 141 IfI* (n1,n2.....nm) = (b1, p2.-Bm) , what is S equal to?

Answer

From the envelope theorem we have:

ol 9
8ni = a—mﬁ (A,pl,pr"'pm) ‘pi:ﬁi,)\:&
0 (& N
= o (an In(pi) + A (1 - Zm)) [pi=pi A=
i \i=1 =1

= In(p).

Problem 142 An entropy measure of the inequality of income is given by:
E(p1,p2,---pm) = — »_piln(p;)
i=1

where the greater is E the greater is the income inequality. Show that the
minimum of this measure of income inequality occurs when p; = % (remember
the constraint that probabilities sum to one!) Show that the estimated income
inequality satisfies:

E(ﬁlvﬁ?v .- ~ﬁ'm) =1 (ﬁlvﬁ% .- -ﬁm) /Tl
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Answer

The Lagrangian is:

L p1pa;-pm) ==Y piln(pi) + A (1 - Zm)
i=1 i=1
with first-order conditions:

oL (X,ﬁl,ﬁg,...ﬁm) m

oL (j\aﬁlaﬁ%u -ﬁm) N
= 1+4+In(p)—A=0fori=1,2,...m.

Opi
It follows then that:
1+1In(p;) —A=0=p; = e

and:

m m
I—Zﬁi:0:>z:e)‘71:1:>me)‘71:1:>5\:1—1n(m)
i=1 i=1

and so:
N A-1 —In(m) 1 ;
pi=e =e =—fort=1,2,...m.
m

The objective function is convex — Z;’;l p;i In (p;) since the Hessian is:

1
L0 0
0 1
H(plvp%'-‘pm) = ) P2
O (|
1
0 e 0 p"n

and so is diagonal with positive elements along the diagonal and hence is positive
definite. Since the constraint is linear it then follows that the solution to the
first-order conditions is a global minimum.
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Dynamics

4.1 Complex Variables and Trigonometry

Problem 143 Given the complex number: % %z calculate the absolute value:
)t

%*%d and the conjugate:%f%i. Will (% —0ast — o0?
Answer
‘We have:
2 1) _ 22+ 1\ 5
3 2 o 3 2/ 6
7L, 2
3 2 3 2
Since ’% — %z’ = % < 1 it follows that (% — %z)f — 0 ast — oo.

Problem 144 What is: |e(*t*)| and when will e(**Dt — 0 as t — co? Eu-
plain. If a + bi = Te3', then what are a and b equal to? If a + bi = €374 then
what are a and b equal to?

Answer
Since
la+bi]> = a® + b2 = (a + bi) (a — bi) = (a + bi) (a + bi)
and since cos (—z) = cos (x) and sin (—z) = —sin (x) we have:

elatti) = cos(a+ bi) + isin (a + bi)
=  cos (a + b’L) —isin (CL + bl)
(

= cos(—(a+bi)) +isin(— (a + bi))
67(a+bi)t

119
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and so we have:

‘e(a+bi) 2 e(atbi) o (a+bi)

—  pla+bi) (a—bi)

— p2a
so that:

‘e(aeri) — o
Thus:
‘e(a+bi)t — et
only if a < 0.
If a + bi = Te3 then
a+bi = 7¢¥ =7 (cos(3)+isin(3))

= a=7Tcos(3), b="Tsin(3).
If a + bi = €34 then
a+bi =t =€’ (e") = e® (cos (4) + isin (4))
and so: a = e3cos (4) and b = e®sin (4) .
Problem 145 Show that:
cos (0) = w, sin (0) = %
Answer

Using e’ = cos (0) + isin (), cos(—0) = cos () and sin (—0) = —sin ()
we have:

el e _ cos(f) +isin () + (cos (—0) + isin (—0))
2 2
_cos (0) 4 isin (0) + (cos (0) —isin (6))
2
_ 2cos(f)
= 5 = cos (9).
el — e _cos (0) + isin (0) — (cos (—0) + isin (—0))
21 2
_cos (0) +isin (0) — (cos (0) — isin (0))
2
~ 2isin(0) .
= —; =sin 0).

Problem 146 Given the complex number 0.8—0.7¢ calculate the absolute value:
0.8 — 0.7i| and the conjugate: 0.8 — 0.72. Will (0.8 —0.74)" — 0 as t — co?
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Answer

‘We have:

0.8 — 0.7i 0.82 + (=0.7)* = 1.063
08—0.77 = 0.8+0.7.

Since 0.8 — 0.7i| > 1 which violates the requirement |a + bi| < 1 for (a + bi)" —
0, it follows that: (0.8 — 0.74)" does not go to 0 as t — co.

Problem 147 Prove that: |e(%| =1.

Answer

We have: e = cos (#)+i sin (¢) and using the fact that: cos (0)>+sin (0)> =
1 that:

|69i| = /(cos (0) + isin (0)) (cos (0) — isin ())
= \/COS (0)> +sin ()> = V1 =1.

Problem 148 Consider the complex number: % + %z Write this in polar form

and calculate (% + %z)t for t = 6 using the polar form. What will happen as
t — oo?

Answer
‘We have:
LS PR RN 1+1it7 1 th
2 2 2 2 2 W2
so that:
1+L6
2 73! J‘
= l + 7 sin 371' ——lz
8 2 8
Since:
11 1 1 ¢
ol = 2 — 1 4z
‘2+ i 7 0.707 < :>(2+ z) —0

Problem 149 Find In (% + %z)
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Answer
Since:
l—&—lz = Lez%:>ln ——&—li =In L +is
2 2 2 2 2 ) T\\2
1 T
= —§1D(2)+ZZ

4.2 Difference Equations

Problem 150 Consider the difference equation:
3 3
Y =100+ 5Yiy — 7Y

Find the equilibrium value Y* and determine whether this difference equation is
stable or not. If Yo = Y1 = 100, calculate Y; fort =2,3,4,5.

Answer

The equilibrium value Y™ is determined by:
3 3
Y* =100+ §Y* — ZY* = Y = 400.
The characteristic polynomial is:
3 3
2 —_ - e
r 2r + 1 0

with complex roots:

_ 3. V8,3 \B,
T1—4 41,7”2—4 42.

The difference equation is stable since:

ri] = |ra| = (§>2 + <£>2 = ? = 0.866 < 1.

4 4
As well:
3 3
Y, = 100+§x10071x100:175
Ys = 100+ % x 175 — % x 100 = 287.5
Y. = 100+ % X 287.5 — % x 175 = 400
Ys = 100+ % x 400 — % X 287.5 = 484.38

3 3
Ys = 100+ 5 x 484.38 — 1 x 400 = 526.57.
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Problem 151 Consider the difference equation:
Y; =100+ 1.3Y; 1 — 0.4Y;_o.

If Yo = Y1 = 100, calculate Yy fort = 2,3,4. What is the equilibrium value Y*7
If the solution is written as: Yy = Y* + Ayrt + Agrl, calculate r1 and ro. Use rq
and o to determine if this difference equation is stable or unstable. Calculate
Ay and As.

Answer
The equilibrium value Y* is determined by:
Y* =100+ 1.3Y* — 04Y" = Y™ = 1000.

The characteristic polynomial is:

r?—13r+04=0
with complex roots:

ry = 0.5,70 = 0.8.
The difference equation is stable since:

|’I“1‘ =0.5< 1, ‘TQ‘ =08<1.

As well:
Yo = 100+ 1.3 x 100 — 0.4 x 100 = 190
Ys = 100+ 1.3 x 190 — 0.4 x 100 = 307
Y, = 100+ 1.3 x307—0.4 x 190 = 423.1
Ys = 100+ 1.3 x 423.1 — 0.4 x 307 = 527.23
Ys = 100+ 1.3 x 527.23 — 0.4 x 423.1 = 616.16.

To calculate A; and A we have:

Yo — 100 = 1000+ Ay + Ay —> Ay + Ay — —900
Y1 = 100 = 1000 + A7y + Aory = 11 A1 + 1242 = =900

o5 08 || ] =] o

Al [ 1 17'T=90] [ 600
Ay | 705 08 —900 | ~ | —1500

or in matrix notation:

so that:
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so the solution is:
Y; = 1000 + 600 x 0.5t — 1500 x 0.8¢

which is plotted below:

10007
80
600]
40

20

Yy

The following 2 problems are based on the following information:
Consider the following version of the accelerator/multiplier model:

Go= 5042V
2
I, = 50+ : (Yie1 —Yi0)
Gt = 50
Y = Ci+1L+Ge

Problem 152 Show that Y; follows a second order difference equation:
Yi =ao+a1Yi 1 +a2Y; o
and calculate a,, ay, and as. Find the equilibrium value of Y;. Calculate Y; for
t=2,3,4,5 when Yy = 200 and Y7 = 200
Answer

We have:
3 2
YV, = Ci+L+G :50+5Y;,1+50+5(Ym —Y;2) +50
2
= 150+Y;_ 1 — 5Yt,2.

The equilibrium value comes from:

150

Y*=150+Y*-04Y* = Y* = = 375.

ST
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As well:

2

Y, = 150+20073X200:27O
2

Y; = 150+27073X200:340
2

Y, = 150+340—g><270:382
2

Y; = 150+382—g><340:396
2

Ys = 150+ 396 — = x 382 = 393.2.

125

Problem 153 Find the roots of the quadratic polynomial for this difference
equation. Show that the economy is stable (note: the appropriate roots are

complex numbers).

Answer
We have:
2
2
_ 20

T r+ 5

so that:
1 1. 1 1.
T1—§+EZ 15, TQ—E—EZ\/15

and:

2

[ra| = [ra| = ‘% + %Z\/B‘ = (%)2 + (%) =0.632 < 1
so that the economy is stable.
Problem 154 A second order difference equation

Yi=ao+a1Yi_1 +axY;_2
can always be rewritten as a first-order vector difference equation as:
EAREEEH R
Yi 1 1 0 Y o 0

or as X; = a+ AX;_1 where:

Yy | a1 a | ao
e I B R
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(This turns out to be a very useful idea. For example the Kalman filter, used in
econometrics and also to put a man on the moon, is based on this idea!) Show
that the equilibrium value of Xy is

X*=(I-4A)""a
and that:
X = X*+ A" (X; — Xo).

Show that if the eigenvalues of A be less than 1 in absolute value then Y, is stable.
Show that the eigenvalues of A are the roots of the characteristic polynomial of
Y;.

Answer
If X; = X;_1 = X* we have:
Xy = a+AX; 1= X" =a+ AX"
= X"'—AX"=a
= ([-A)X"=a
= X*=(I-4)""a
Thus if X; = X; — X* we have:
X, =a+AXi 1, X* =a+AX* = X, = AX,_,.
Thus:
X;=AX; 1 = Xy = AAX 2 = A’Xy o= - = X, = A'X
or using X; = X; — X* we have:
X = X*+ A" (X; — Xo).
Since
A=CAC?
where A is a diagonal matrix with the eigenvalues along the diagonal so that:
At = CAtC!

and hence A* — 0 iff AY — 0 which requires all eigenvalues be less than 1 in
absolute value. The eigenvalues of A are given by the roots of :

a1 as 10 B ar—A a
wl [T 5] fo V] = e[t 5
= M _g)\—as

which is the characteristic polynomial of Y;.
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Problem 155 Consider the difference equation which we considered earlier:
Y; =100+ 1.3Y; 1 — 0.4Y;_o.

where Yy = Yy = 100. Write this in the form Xy = a + AX;_1 considered in the
previous question and show that Yy is stable by calculating the eigenvalues of A.
Write down the solution Xy = X* + A (X; — Xo) for this model.

Answer

Here :

[ v [ 13 —04 [ 100
e N IR R

The eigenvalues of A are the roots of :

(12 23] 8] - ] 3]
= N -1L3\+04=0
and so:
A1 = 0.8, Ao = 0.5.

Note that these are identical to the roots of the characteristic polynomial (which
is also the same) of:

r2—1.3r+04=0.

Since both eigenvalues are less than 1 in absolute value Y; is stable. Alternatively
At = CA*C~! as (the computer calculates this):

. 2.6667 —1.6667 ] {o.sﬁ 0 Hl.o 0.5} {0 0}
A= 1o o0

| 33333 —3.3333 | 0 0.5 1.0 -0.8

since:

0 05

c_[08 01 _J0 0
e[ = [o e ]

The equilibrium value X* = (I — A) ' a is

S R E R R EIE

and so the equilibrium value is Y* = 1000, as we calculated earlier.
The starting values are Yy = Y; = 100 or:

100
Xo= [ 100 ]
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so that X; = X* + A (X; — X) becomes:

)=l ][ T (- ])

Y, 1 _[1000] [13 —04 T 900
Y,y |~ | 1000 1 0| | 900
or replacing A" by CA*C'~! given above:

Y, _ [1000 ] [2.6667 16667 [ .8 0 1.0 —.5 ][ 900
Y,y | | 1000 3.3333 —3.3333 0 .5 || 10 —8 ]| 900
1000 + 1200.0 x .8 — 300.01 x . 5!

1000 + 1500.0 x . 8¢ — 599.99 x .5t

or

Problem 156 Consider the difference equation:
1
Y, =100+ Y1 — 53/2—2

If Yy = Yy = 100, calculate Yy for t = 2,3,4,5,6. If the solution is written
as: Yy = Y* + Aprt + Aorl, | calculate Y* and explain what it is. Calculate r
and ro. Determine if this difference equation is stable by calculating | r1 | and
| 72 |. What does the fact that r1 and ro are complex tell you, or if they are not
complex, what does that tell you? Calculate A1 and As. Show that the solution
can be written as:

1\ s
Y, = 200 — 200 <E> sin (Z (t+ 1)) .

Answer

The equilibrium value Y* is determined by:
1
Y*=100+Y" — §Y* = Y™ = 200.

The characteristic polynomial is:

1

2

— =0

rortg

with complex roots:

L 1 1,
r=—- -1, 79 = — — —1.
L= =5 79!

The difference equation is stable since:

1> /1\* V2
[r1] = |ra| = <§) +<§) = =0707<1.
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As well:
Y, = 100+100—%><100=150
Y; = 100+150—%><100=200
Y, = 100+200—%><150=225
Ys = 100+225f% x 200 = 225

Vg

100 + 225 — % x 225 = 212.5.

To calculate A; and A; we have:

Yo = 100 =200+ A; + Ay —> A; + Ay = —100
Y1 = 100=200+ Ayr1 + Aory = 1141 + 1242 = —100

or in matrix notation:

1 1 Al [ —100
i4di 1L 4| [ 100
so that:
Al [ 1 1 17'[ =100 [ —50+50i
Ay | 7| 3+31 3—73i —100 | ~ | =50 —50¢ |

Y, = 200+(—50+5o@')(

1 1
- 2 1 )
00 00 ( <—2 3 z)

1 .z 1\ .2 1 .z 1\' ..
= 200—100 | —=e7 "% x [ —= ezzt—&——elzx(—) e~tat
<\/§ < 2) V2 2
1

t+1 i (t41) —iZ(t4+1)
- 200—200(—) <e4 te ® )

72 >
— 200 — 200 <%>m sin (% (t+ 1)) .

Problem 157 Consider the difference equation:
Y; =104 0.3Y;_1 +0.4Y;_»o

If Yy = Y7 =100, calculate Yy fort =2,3,4. What is the equilibrium value Y*7
If the solution is written as: Yy = Y* + Ayrl + Aorl, calculate r1 and ro. Use
r1 and ro to determine if this difference equation is stable or unstable.
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Answer

The equilibrium value Y™ is determined by:

100
Y*=1004+03Y"+04Y" =Y* = 03 = 333.33.

The characteristic polynomial is:
r2—03r—04=0
with roots:
ry = —0.5,70 =0.8.
The difference equation is stable since:

|’I“1‘ =0.5< 1, ‘Tg‘ =08<1.

As well:
Y = 100+ 0.3 x 1004+ 0.4 x 100 = 170
Ys = 100+40.3 x 170+ 0.4 x 100 = 191
Y, = 1004+0.3x191+0.4 x 170 = 225.3
Ys = 1004 0.3 x 243.99 + 0.4 x 225.3 = 263.32
Ys = 100+ 0.3 x 263.32 + 0.4 x 225.3 = 269.12.

To calculate A; and A; we have:

Yo = 100=333.33+ A; + Ay = A; + Ay = —233.33
Y: = 100 =333.33 + A17"1 + Ag?"g — ’f'lA] + TQAQ = —233.33

or in matrix notation:
1 1 A || —233.33
-0.5 0.8 Ay || —233.33
so that:
Al 1 1]7'[-233337 [ 35897
Ay | 7| =05 0.8 —233.33 | ~ | —269.23
so the solution is:

Y, = 333.33 + 35.897 x (—0.5)" — 269.23 x (0.8)"
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which is plotted below:

3007
2507

2007

1007

Problem 158 Consider the second order difference equation:

Y, = 50+1.2Y; 1 —0.3Y; o
Y1 = Y, =1400.
Calculate Yy fort = 2,3,4. What is the equilibrium value Y*?7 If the solution

is written as: Yy = Y* + Ayrl + Ao, calculate m1 and ro. Use r1 and ro to
determine if this difference equation is stable or unstable.

Answer

The equilibrium value Y* is then:

50
v = = 500.
1—(L2) - (—0.3)

The characteristic polynomial is:
72 —12r +03=0

so that:

—(-1.2) + \/(—1.2)2 —4x0.3
2

T1,T2 =
or:
T = 0355, To = 0.845.

Since | 71 |< 1 and | 72 |< 1 this difference equation is stable; that is no matter
what the starting values Y; will converge to the equilibrium value Y* = 500.
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Problem 159 Consider the second order difference equation:
Y, = —-50+0.6Y:_1 +0.5Y; o
Yy = 450,Y, = 400.

What is the equilibrium value Y*? If the solution is written as: Yy = Y*+ Ayri +
Aork, calculate ry and ro. Use r1 and ro to determine if this difference equation
1s stable or unstable.
Answer

The equilibrium value Y* is then:

—50
YV = —————— = 500.
1-(0.6) — (0.5)

The characteristic polynomial is:
r?—0.6r—05=0
so that
r1 = 1.0681, 7o = —0.46811.
Since r1 = 1.07 > 1 it follows that the difference equation is unstable.
Problem 160 Consider the second order difference equation:

Y; = 504+ 1.1Y;—; —0.6Y;_2
Y: = 50,Y, =60.
Calculate Yy for t = 2,3,4. What is the equilibrium value Y*?7 If the solution

is written as: Yy = Y* + Ayrl + Ao, calculate vy and ro. Use r1 and ro to
determine if this difference equation is stable or unstable.

Answer

The equilibrium value Y™ is then:

50
Y = = 100.
=) - (06

The characteristic polynomial is:
2 —11r4+06=0
so that:

1+4/(-1)*—4x 3
2

ry, T2 =
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or:
r1 = 0.55 — 0.545444, r9 = 0.55 + 0.545444.

Since

|7y |=| e |= \/(0.55)2 +(0.54544)% = 0.7746 < 1
the difference equation is stable.
Problem 161 Consider the second order difference equation:
Y, = 50+1.8Y;_1 —1.3Yio
Y7 = 100,Y, = 120.

JIf Yo =Y, = 100, calculate Yy for t = 2,3,4. What is the equilibrium value
Y*? If the solution is written as: Yy = Y* + Ayrt + Aork, calculate r1 and rs.
Use r1 and ro to determine if this difference equation is stable or unstable.

Answer

The equilibrium value Y* is then:

50
Y= = 100.
1—(1.8) — (—1.3)

The characteristic polynomial is:
r?—18r+13=0
so that:
r1 =0.940.7¢, 72 = 0.9 - 0.7¢.
Since
71 =l rs |= V0.2 40.72 = 1.14 > 1
the difference equation is unstable.

Problem 162 Suppose that Y; is GNP, C; is consumption, I; is investment
and Gy is government expenditure and that:

Cy = 1004 0.6Y;_1

I = 50+0.5(Y;—1 — Vi),
Gy = 50

Y, = Ci+ 1+ G,

Find the difference equation that Y; follows, its equilibrium value Y* and the
solution to the difference equation. Is the economy stable?
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Answer

It now follows that:

Y, = CGi+1L+Ge
100 4+ 0.6Y;—1 + 50 + 0.5 (Yi—1 — Yi—2) + 50

or
Y; =200+ 1.1Y;—1 — 0.5Y:_2

which is a second-order difference equation.
The equilibrium value of GNP is thus:

200
= —————— = 500.
1-1.1-(-0.5)
The characteristic polynomial is then:
r?—11r+05=0

with roots:

r1 = 0.55 4 0.444, 79 = 0.55 — 0.44s.

Since:
[r1| = |r2] = V/0.552 4 0.442 = 0.704

the difference equation is stable.

4.3 Differential Equations

Problem 163 Consider the differential equation:

y" (t) + 5y (t) + 4y (t) = 36.
Calculate the equilibrium value y*. If y (t) = y* + Aje™?t + Aze™!, calculate

r1 and 72 and from these determine whether or not this differential equation is
stable. If A1 = Ay = 1 calculate:

/w (0 () — ")t
0

If y (0) = 20 and ¢’ (0) = —1 find A; and A, and write down the solution y (¢) .
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Answer

The equilibrium value y* is given by:

36
f=—=09.
Y7
The characteristic polynomial is then:
P 4+5r+4 = 0
= r=-4<0
T2 = -1 <0.

Since r1 < 0 and ro < 0 the differential equation is stable.
We have:

> o%\2 _ R —4t\2
[wo-vra = [Teseny?a

o 5 8 40
We have
20 = 9+ A+ Ay
-1 = —-1xA;+—-4x A,

so that in matrix notation:

R
[2]-[o 4] [A]-[4]

and so the solution is:

so that:

y(t) =9+ —et - —e ¥

135
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which is plotted below:

207

Problem 164 Consider the differential equation:

y' () +3y (8) +y () =4,y(0) =29 (0) =1
If y(t) = y* + Are™? + Age™!, calculate y* and explain what it is. Calcu-
late 1 and ro and determine whether or not this differential equation is stable.
Calculate A1 and As.
Answer
The equilibrium value y* is given by:
y =4
The characteristic polynomial is then:
P 4+3r+1 = 0
— = 7; + %ﬁ = —0.38197 <0

3 1
= ——=—=v5=-2618<0.
) 5 2\/_ <
Since r1 < 0 and r2 < 0 the differential equation is stable.
We have:
y(O) = 2 :4+A16TIO+A26r2O :>A1 +A2 = -2
y/ (0) = 1= TlAlerlo + 7"2A2€r20 - 7“1A1 + TQAQ =1

so that in matrix notation:

sins sl )=
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so that:

Al 1 1 T2 [ —1.8044
Ay | 7| “8+1vF —3-L5 1|7 | —010557 |

Problem 165 Consider:

If y(t) = y* + Are™t + Age™t calculate y* and explain what it is. Calcu-
late r1 and ro and determine whether or not this differential equation is stable.
Calculate A1 and As.

Answer

‘We have:

6
—2_3
L

and the quadratic that defines r; and 79 is:

2 +8r+2=0
with solutions:
r = —4++v14=-0.25834<0
rg = —4—+14=-7.7417<0.

Since r1 < 0 and ro < 0 we conclude that y (¢) stable.
To solve for A; and A, note that from:

y(t)=3+ Ajet 4 Agem?
it follows that:
1 1 A [ -1
4414 —-4-/14 Ay | — | 3
SO:
Al 1 1 -
Ay - 4414 —-4-14 3
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The solution is therefore:

y(t) =3+ <_% - %\/ﬁ> o(—4+VIa)t _ % (_1 n \/ﬁ) V1de(4+VID)t

which is plotted below

b
2.5 //k/

15
1
0.5
0 2 4 6 3 10 12
Y (1)
Problem 166 Consider:
y'(t) =3y (t) —2y(t) = —4
y(0) =
y(0) = 2

If y(t) = y* + Are™t + Age™t calculate y* and explain what it is. Calcu-
late r1 and ro and determine whether or not this differential equation is stable.
Calculate A1 and As.

Answer
‘We have:
—4
fee—=2
L
and the quadratic that defines r; and 79 is:
r?—3r—2=0
with solutions:
3 1
rn = -+zV17>0
2 2
3 1
= ——=V17<0.
T2 5 9 <
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Since 71 > 0 it follows that (even though ro < 0) that the differential equation
is unstable.
To solve for A; and A3 note that from:

y(t) =2+ Aje™! + Age™?

it follows that:

SO:
Al 1 1 B .
Ay | | 2+3VIT 3417 2
—5VIT—3
Thus:

1
y(t) =2—1.3489exp <§ (73 + m) t) 13488763 (BHVIT)

which is plotted below:

Problem 167 Consider:

y' () +3y (1) +5y(t) = 10
y(0) =
y'(0) = 2

If y (t) = y* + Are™t + Ase™t, calculate y* and explain what it is. Calculate r
and ro and determine whether or not this differential equation is stable.
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Answer

‘We have:

*:—:2
¥ =3

and the quadratic that defines 1 and ro is:

r4+3r+5=0
so that:
oo 3 VI
T2 e
3 V11,
rg = —=— —1.

\V]

2

Since the real part of 1 and ro, here f%, is negative, it follows that the differ-
ential equation is stable.

Problem 168 Consider:

Y (t) =3y () +5y(t) = 10
y(0) =
y(0) = 2

Ify (t) = y* + Are™t + Ase™t, calculate y* and explain what it is. Calculate rq
and ro and determine whether or not this differential equation is stable. Find
Ay and Ay and the solution to y (t) .

Answer

‘We have:

*:—:2
¥ =3

and the quadratic that defines 1 and r9 is:

r* —=3r+5=0
so that:

re = §+£z

D)

ry = §——11i

27 9 T

Since the real part of r; and ry, here %, is positive, it follows that the differential
equation is unstable.
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It follows that:

2 2
SO:
A 1 1 T
_ [ 3-mivid
3+ 5Vl

The exact solution is:
g (L AT (e (L L ) (3
y(t) = 2+(2 55" 11)@ + 2+221 11)e
7 1
2+ ﬁ\/lle%tsin <§\/11t> —e

[
o~
o
(@
7]
7\
|~
&‘
—
g
~_

which is plotted below:

-100

-200

-300
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